Systematic review and network meta-analysis of machine learning algorithms in sepsis prediction

被引:3
|
作者
Gao, Yulei [1 ,2 ,5 ]
Wang, Chaolan [1 ]
Shen, Jiaxin [3 ]
Wang, Ziyi [4 ]
Liu, Yancun [1 ]
Chai, Yanfen [1 ,2 ,5 ]
机构
[1] Tianjin Med Univ, Gen Hosp, Dept Emergency Med, Tianjin 300052, Peoples R China
[2] Tianjin Med Univ, Natl Med Emergency Team Poisoning, Gen Hosp, Tianjin 300052, Peoples R China
[3] Cangzhou Cent Hosp, Dept Intens Care Unit, Cangzhou 061001, Peoples R China
[4] Tsinghua Univ, Beijing Tsinghua Changgung Hosp, Sch Clin Med, Dept Gen Surg, Beijing 102218, Peoples R China
[5] Tianjin Med Univ, Dept Emergency Med, Gen Hosp, 154 Anshan Rd, Tianjin, Peoples R China
基金
中国国家自然科学基金;
关键词
Sepsis; Machine learning algorithms; Sensitivity; Specificity; Predictive accuracy; Network meta-analysis; DEFINITIONS; REGRESSION; MODEL;
D O I
10.1016/j.eswa.2023.122982
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Background: With the integration of artificial intelligence and clinical medicine, machine learning (ML) algorithms have been applied to develop sepsis predictive models for sepsis management. The purpose is to systematically summarize existing evidence to determine the effectiveness of ML algorithms in sepsis. Methods: We conducted a systematic electronic search of databases including PubMed, Cochrane Library, Embase, and the Web of Science, and included all case -control and cohort studies using terms reflecting sepsis and ML up to September 2023. statistical software STATA was used for network meta -analysis, and QUADAS-2 tool was used to assess the certainty of evidence. Results: The SUCRA results for sensitivity, specificity, and predictive accuracy of various models are as follows: DSPA (77.0 %) > Imbalance-XGBoost (72.9 %) > CNN + Bi-LSTM (69.7 %) > CNN (67.3 %) > LR (62.4 %) > Ensemble model (55.9 %) > RF (53.2 %) > ET (51.3 %) > XGBoost (49.1 %) > DNN (48.1 %) > MLP (47.5 %) > RBF (47.1 %) > KNN (45.8 %) > NB (33.3 %) > SVM (13.7 %) > Bi-LSTM (5.7 %); CNN (78.3 %) > CNN + BiLSTM (77.6 %) > DSPA (75.1 %) > ET (69 %) > Bi-LSTM (68.5 %) > MLP (51 %) > RBF (50.2 %) > KNN (47.3 %) > RF (47 %) > Ensemble Model (43.4 %) > XGBoost (38.1 %) > SVM (37.3 %) > NB (34.2 %) > DNN (31.1 %) > LR (30.4 %) > Imbalance-XGBoost (21.5 %); DSPA (85.9 %) > CNN + Bi-LSTM (82.6 %) > CNN (81.9 %) > Imbalance-XGBoost (76.8 %) > ET (67.8 %) > RF (51.1 %) > Ensemble model (47.7 %) > XGBoost (44.4 %) > LR (42.7 %) > MLP (38.1 %) > RBF (37.8 %) > KNN (37.3 %) > DNN(35.8 %) > Bi-LSTM(33.3 %) > NB(21.5 %) > SVM(15.3 %). Conclusions: DSPA and CNN may be the best ML algorithms for predicting sepsis. Imbalance-XGBoost algorithm outperformed other traditional ML algorithms in terms of sensitivity and predictive accuracy. This study has several implications for clinical practice and research, highlighting the potential benefits of using ML algorithms in sepsis management, particularly in improving sepsis detection and reducing mortality rates. Through our systematic review and network meta -analysis, we have provided a comprehensive and accurate assessment of the effectiveness of ML algorithms in sepsis prediction, emphasizing the need for further exploration and evaluation of these algorithms to advance sepsis management.
引用
收藏
页数:13
相关论文
共 50 条
  • [41] Prognostic Value of Sublingual Microcirculation in Sepsis: A Systematic Review and Meta-analysis
    Tang, Aling
    Shi, Yi
    Dong, Qingqing
    Wang, Sihui
    Ge, Yao
    Wang, Chenyan
    Gong, Zhimin
    Zhang, Weizhen
    Chen, Wei
    JOURNAL OF INTENSIVE CARE MEDICINE, 2024, 39 (12) : 1221 - 1230
  • [42] Adjuvant therapy in neonatal sepsis to prevent mortality - A systematic review and network meta-analysis
    Abiramalatha, T.
    Ramaswamy, V. V.
    Bandyopadhyay, T.
    Somanath, S. H.
    Shaik, N. B.
    Kallem, V. R.
    Pullattayil, A. K.
    Kaushal, M.
    JOURNAL OF NEONATAL-PERINATAL MEDICINE, 2022, 15 (04) : 699 - 719
  • [43] Predictive ability of hypotension prediction index and machine learning methods in intraoperative hypotension: a systematic review and meta-analysis
    Mohammadi, Ida
    Firouzabadi, Shahryar Rajai
    Hosseinpour, Melika
    Akhlaghpasand, Mohammadhosein
    Hajikarimloo, Bardia
    Tavanaei, Roozbeh
    Izadi, Amirreza
    Zeraatian-Nejad, Sam
    Eghbali, Foolad
    JOURNAL OF TRANSLATIONAL MEDICINE, 2024, 22 (01)
  • [44] Routine screening for colonization by Gram-negative bacteria in neonates at intensive care units for the prediction of sepsis: systematic review and meta-analysis
    Seidel, J.
    Haller, S.
    Eckmanns, T.
    Harder, T.
    JOURNAL OF HOSPITAL INFECTION, 2018, 99 (04) : 367 - 380
  • [45] The diagnostic performance of laboratory tests of neurosyphilis: a systematic review and network meta-analysis
    Ding, Duyu
    Gao, Junhua
    Zhang, Wei
    Xu, Dongmei
    EUROPEAN NEUROLOGY, 2023, 86 (06) : 418 - 429
  • [46] Prediction of mortality in adult patients with sepsis using six biomarkers: a systematic review and meta-analysis
    Andreas Pregernig
    Mattia Müller
    Ulrike Held
    Beatrice Beck-Schimmer
    Annals of Intensive Care, 9
  • [47] Prediction of mortality in adult patients with sepsis using six biomarkers: a systematic review and meta-analysis
    Pregernig, Andreas
    Mueller, Mattia
    Held, Ulrike
    Beck-Schimmer, Beatrice
    ANNALS OF INTENSIVE CARE, 2019, 9 (01)
  • [48] Prevalence and Prognosis of Sepsis-Induced Cardiomyopathy: A Systematic Review and Meta-Analysis
    Hasegawa, Daisuke
    Ishisaka, Yoshiko
    Maeda, Tetsuro
    Prasitlumkum, Narut
    Nishida, Kazuki
    Dugar, Siddharth
    Sato, Ryota
    JOURNAL OF INTENSIVE CARE MEDICINE, 2023, 38 (09) : 797 - 808
  • [49] Is plasma arginine concentration decreased in patients with sepsis? A systematic review and meta-analysis
    Davis, Joshua S.
    Anstey, Nicholas M.
    CRITICAL CARE MEDICINE, 2011, 39 (02) : 380 - 385
  • [50] Frequency and mortality of sepsis and septic shock in China: a systematic review and meta-analysis
    Liu, Yan-Cun
    Yao, Ying
    Yu, Mu-Ming
    Gao, Yu-Lei
    Qi, An-Long
    Jiang, Tian-Yu
    Chen, Zhen-Sen
    Shou, Song-Tao
    Chai, Yan-Fen
    BMC INFECTIOUS DISEASES, 2022, 22 (01)