Systematic review and network meta-analysis of machine learning algorithms in sepsis prediction
被引:3
|
作者:
Gao, Yulei
论文数: 0引用数: 0
h-index: 0
机构:
Tianjin Med Univ, Gen Hosp, Dept Emergency Med, Tianjin 300052, Peoples R China
Tianjin Med Univ, Natl Med Emergency Team Poisoning, Gen Hosp, Tianjin 300052, Peoples R China
Tianjin Med Univ, Dept Emergency Med, Gen Hosp, 154 Anshan Rd, Tianjin, Peoples R ChinaTianjin Med Univ, Gen Hosp, Dept Emergency Med, Tianjin 300052, Peoples R China
Gao, Yulei
[1
,2
,5
]
Wang, Chaolan
论文数: 0引用数: 0
h-index: 0
机构:
Tianjin Med Univ, Gen Hosp, Dept Emergency Med, Tianjin 300052, Peoples R ChinaTianjin Med Univ, Gen Hosp, Dept Emergency Med, Tianjin 300052, Peoples R China
Wang, Chaolan
[1
]
Shen, Jiaxin
论文数: 0引用数: 0
h-index: 0
机构:
Cangzhou Cent Hosp, Dept Intens Care Unit, Cangzhou 061001, Peoples R ChinaTianjin Med Univ, Gen Hosp, Dept Emergency Med, Tianjin 300052, Peoples R China
Shen, Jiaxin
[3
]
Wang, Ziyi
论文数: 0引用数: 0
h-index: 0
机构:
Tsinghua Univ, Beijing Tsinghua Changgung Hosp, Sch Clin Med, Dept Gen Surg, Beijing 102218, Peoples R ChinaTianjin Med Univ, Gen Hosp, Dept Emergency Med, Tianjin 300052, Peoples R China
Wang, Ziyi
[4
]
Liu, Yancun
论文数: 0引用数: 0
h-index: 0
机构:
Tianjin Med Univ, Gen Hosp, Dept Emergency Med, Tianjin 300052, Peoples R ChinaTianjin Med Univ, Gen Hosp, Dept Emergency Med, Tianjin 300052, Peoples R China
Liu, Yancun
[1
]
Chai, Yanfen
论文数: 0引用数: 0
h-index: 0
机构:
Tianjin Med Univ, Gen Hosp, Dept Emergency Med, Tianjin 300052, Peoples R China
Tianjin Med Univ, Natl Med Emergency Team Poisoning, Gen Hosp, Tianjin 300052, Peoples R China
Tianjin Med Univ, Dept Emergency Med, Gen Hosp, 154 Anshan Rd, Tianjin, Peoples R ChinaTianjin Med Univ, Gen Hosp, Dept Emergency Med, Tianjin 300052, Peoples R China
Chai, Yanfen
[1
,2
,5
]
机构:
[1] Tianjin Med Univ, Gen Hosp, Dept Emergency Med, Tianjin 300052, Peoples R China
[2] Tianjin Med Univ, Natl Med Emergency Team Poisoning, Gen Hosp, Tianjin 300052, Peoples R China
[3] Cangzhou Cent Hosp, Dept Intens Care Unit, Cangzhou 061001, Peoples R China
[4] Tsinghua Univ, Beijing Tsinghua Changgung Hosp, Sch Clin Med, Dept Gen Surg, Beijing 102218, Peoples R China
[5] Tianjin Med Univ, Dept Emergency Med, Gen Hosp, 154 Anshan Rd, Tianjin, Peoples R China
Background: With the integration of artificial intelligence and clinical medicine, machine learning (ML) algorithms have been applied to develop sepsis predictive models for sepsis management. The purpose is to systematically summarize existing evidence to determine the effectiveness of ML algorithms in sepsis. Methods: We conducted a systematic electronic search of databases including PubMed, Cochrane Library, Embase, and the Web of Science, and included all case -control and cohort studies using terms reflecting sepsis and ML up to September 2023. statistical software STATA was used for network meta -analysis, and QUADAS-2 tool was used to assess the certainty of evidence. Results: The SUCRA results for sensitivity, specificity, and predictive accuracy of various models are as follows: DSPA (77.0 %) > Imbalance-XGBoost (72.9 %) > CNN + Bi-LSTM (69.7 %) > CNN (67.3 %) > LR (62.4 %) > Ensemble model (55.9 %) > RF (53.2 %) > ET (51.3 %) > XGBoost (49.1 %) > DNN (48.1 %) > MLP (47.5 %) > RBF (47.1 %) > KNN (45.8 %) > NB (33.3 %) > SVM (13.7 %) > Bi-LSTM (5.7 %); CNN (78.3 %) > CNN + BiLSTM (77.6 %) > DSPA (75.1 %) > ET (69 %) > Bi-LSTM (68.5 %) > MLP (51 %) > RBF (50.2 %) > KNN (47.3 %) > RF (47 %) > Ensemble Model (43.4 %) > XGBoost (38.1 %) > SVM (37.3 %) > NB (34.2 %) > DNN (31.1 %) > LR (30.4 %) > Imbalance-XGBoost (21.5 %); DSPA (85.9 %) > CNN + Bi-LSTM (82.6 %) > CNN (81.9 %) > Imbalance-XGBoost (76.8 %) > ET (67.8 %) > RF (51.1 %) > Ensemble model (47.7 %) > XGBoost (44.4 %) > LR (42.7 %) > MLP (38.1 %) > RBF (37.8 %) > KNN (37.3 %) > DNN(35.8 %) > Bi-LSTM(33.3 %) > NB(21.5 %) > SVM(15.3 %). Conclusions: DSPA and CNN may be the best ML algorithms for predicting sepsis. Imbalance-XGBoost algorithm outperformed other traditional ML algorithms in terms of sensitivity and predictive accuracy. This study has several implications for clinical practice and research, highlighting the potential benefits of using ML algorithms in sepsis management, particularly in improving sepsis detection and reducing mortality rates. Through our systematic review and network meta -analysis, we have provided a comprehensive and accurate assessment of the effectiveness of ML algorithms in sepsis prediction, emphasizing the need for further exploration and evaluation of these algorithms to advance sepsis management.
机构:
Sichuan Univ, West China Univ Hosp 2, Dept Pediat, Chengdu, Sichuan, Peoples R ChinaSichuan Univ, West China Univ Hosp 2, Dept Pediat, Chengdu, Sichuan, Peoples R China
Qiu, Xia
Lei, Yu-Peng
论文数: 0引用数: 0
h-index: 0
机构:
Sichuan Univ, West China Univ Hosp 2, Dept Pediat, Chengdu, Sichuan, Peoples R ChinaSichuan Univ, West China Univ Hosp 2, Dept Pediat, Chengdu, Sichuan, Peoples R China
Lei, Yu-Peng
Zhou, Rui-Xi
论文数: 0引用数: 0
h-index: 0
机构:
Sichuan Univ, West China Univ Hosp 2, Dept Pediat, Chengdu, Sichuan, Peoples R China
Sichuan Univ, Key Lab Birth Defects & Related Dis Women & Childr, Chengdu, Sichuan, Peoples R China
Sichuan Univ, West China Univ Hosp 2, Dept Pediat, Chengdu 610041, Sichuan, Peoples R ChinaSichuan Univ, West China Univ Hosp 2, Dept Pediat, Chengdu, Sichuan, Peoples R China
机构:Sichuan Univ, West China Hosp, West China Sch Med, Lab Pulm Dis, Chengdu, Sichuan, Peoples R China
Liao, Yi
Wang, Ran
论文数: 0引用数: 0
h-index: 0
机构:Sichuan Univ, West China Hosp, West China Sch Med, Lab Pulm Dis, Chengdu, Sichuan, Peoples R China
Wang, Ran
Wen, Fuqiang
论文数: 0引用数: 0
h-index: 0
机构:
Sichuan Univ, West China Hosp, West China Sch Med, Lab Pulm Dis, Chengdu, Sichuan, Peoples R China
Sichuan Univ, West China Hosp, West China Sch Med, Dept Resp & Crit Care Med, Chengdu, Sichuan, Peoples R ChinaSichuan Univ, West China Hosp, West China Sch Med, Lab Pulm Dis, Chengdu, Sichuan, Peoples R China