Systematic review and network meta-analysis of machine learning algorithms in sepsis prediction

被引:3
|
作者
Gao, Yulei [1 ,2 ,5 ]
Wang, Chaolan [1 ]
Shen, Jiaxin [3 ]
Wang, Ziyi [4 ]
Liu, Yancun [1 ]
Chai, Yanfen [1 ,2 ,5 ]
机构
[1] Tianjin Med Univ, Gen Hosp, Dept Emergency Med, Tianjin 300052, Peoples R China
[2] Tianjin Med Univ, Natl Med Emergency Team Poisoning, Gen Hosp, Tianjin 300052, Peoples R China
[3] Cangzhou Cent Hosp, Dept Intens Care Unit, Cangzhou 061001, Peoples R China
[4] Tsinghua Univ, Beijing Tsinghua Changgung Hosp, Sch Clin Med, Dept Gen Surg, Beijing 102218, Peoples R China
[5] Tianjin Med Univ, Dept Emergency Med, Gen Hosp, 154 Anshan Rd, Tianjin, Peoples R China
基金
中国国家自然科学基金;
关键词
Sepsis; Machine learning algorithms; Sensitivity; Specificity; Predictive accuracy; Network meta-analysis; DEFINITIONS; REGRESSION; MODEL;
D O I
10.1016/j.eswa.2023.122982
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Background: With the integration of artificial intelligence and clinical medicine, machine learning (ML) algorithms have been applied to develop sepsis predictive models for sepsis management. The purpose is to systematically summarize existing evidence to determine the effectiveness of ML algorithms in sepsis. Methods: We conducted a systematic electronic search of databases including PubMed, Cochrane Library, Embase, and the Web of Science, and included all case -control and cohort studies using terms reflecting sepsis and ML up to September 2023. statistical software STATA was used for network meta -analysis, and QUADAS-2 tool was used to assess the certainty of evidence. Results: The SUCRA results for sensitivity, specificity, and predictive accuracy of various models are as follows: DSPA (77.0 %) > Imbalance-XGBoost (72.9 %) > CNN + Bi-LSTM (69.7 %) > CNN (67.3 %) > LR (62.4 %) > Ensemble model (55.9 %) > RF (53.2 %) > ET (51.3 %) > XGBoost (49.1 %) > DNN (48.1 %) > MLP (47.5 %) > RBF (47.1 %) > KNN (45.8 %) > NB (33.3 %) > SVM (13.7 %) > Bi-LSTM (5.7 %); CNN (78.3 %) > CNN + BiLSTM (77.6 %) > DSPA (75.1 %) > ET (69 %) > Bi-LSTM (68.5 %) > MLP (51 %) > RBF (50.2 %) > KNN (47.3 %) > RF (47 %) > Ensemble Model (43.4 %) > XGBoost (38.1 %) > SVM (37.3 %) > NB (34.2 %) > DNN (31.1 %) > LR (30.4 %) > Imbalance-XGBoost (21.5 %); DSPA (85.9 %) > CNN + Bi-LSTM (82.6 %) > CNN (81.9 %) > Imbalance-XGBoost (76.8 %) > ET (67.8 %) > RF (51.1 %) > Ensemble model (47.7 %) > XGBoost (44.4 %) > LR (42.7 %) > MLP (38.1 %) > RBF (37.8 %) > KNN (37.3 %) > DNN(35.8 %) > Bi-LSTM(33.3 %) > NB(21.5 %) > SVM(15.3 %). Conclusions: DSPA and CNN may be the best ML algorithms for predicting sepsis. Imbalance-XGBoost algorithm outperformed other traditional ML algorithms in terms of sensitivity and predictive accuracy. This study has several implications for clinical practice and research, highlighting the potential benefits of using ML algorithms in sepsis management, particularly in improving sepsis detection and reducing mortality rates. Through our systematic review and network meta -analysis, we have provided a comprehensive and accurate assessment of the effectiveness of ML algorithms in sepsis prediction, emphasizing the need for further exploration and evaluation of these algorithms to advance sepsis management.
引用
收藏
页数:13
相关论文
共 50 条
  • [31] Machine learning improves prediction of postoperative outcomes after gastrointestinal surgery: a systematic review and meta-analysis
    Wang, Jane
    Tozzi, Francesca
    Ganjouei, Amir Ashraf
    Romero-Hernandez, Fernanda
    Feng, Jean
    Calthorpe, Lucia
    Castro, Maria
    Davis, Greta
    Withers, Jacquelyn
    Zhou, Connie
    Chaudhary, Zaim
    Adam, Mohamed
    Berrevoet, Frederik
    Alseidi, Adnan
    Rashidian, Nikdokht
    JOURNAL OF GASTROINTESTINAL SURGERY, 2024, 28 (06) : 956 - 965
  • [32] Machine learning-based prediction models for falls in hospitalized patients: A systematic review and meta-analysis
    Xie, Ronggui
    Shao, Le
    Pei, Jingru
    Shi, Yuyan
    Tang, Mingming
    Sun, Xueqin
    Deng, Guiyu
    Zhao, Hong
    GERIATRIC NURSING, 2025, 63 : 487 - 498
  • [33] SIRS, SOFA, qSOFA, and NEWS in the diagnosis of sepsis and prediction of adverse outcomes: a systematic review and meta-analysis
    Qiu, Xia
    Lei, Yu-Peng
    Zhou, Rui-Xi
    EXPERT REVIEW OF ANTI-INFECTIVE THERAPY, 2023, 21 (08) : 891 - 900
  • [34] Diagnostic and prognostic value of long noncoding RNAs in sepsis: a systematic review and meta-analysis
    Liao, Yi
    Wang, Ran
    Wen, Fuqiang
    EXPERT REVIEW OF MOLECULAR DIAGNOSTICS, 2022, 22 (08) : 821 - 831
  • [35] Predicting the radiological outcome of cerebral aneurysm treatment with machine learning algorithms; a systematic review and diagnostic meta-analysis
    Habibi, Mohammad Amin
    Amani, Hanieh
    Mirjani, Mohammad Sina
    Molla, Ayoob
    INTERDISCIPLINARY NEUROSURGERY-ADVANCED TECHNIQUES AND CASE MANAGEMENT, 2024, 36
  • [36] Accuracy of Machine Learning Algorithms for the Classification of Molecular Features of Gliomas on MRI: A Systematic Literature Review and Meta-Analysis
    van Kempen, Evi J.
    Post, Max
    Mannil, Manoj
    Kusters, Benno
    ter Laan, Mark
    Meijer, Frederick J. A.
    Henssen, Dylan J. H. A.
    CANCERS, 2021, 13 (11)
  • [37] Corticosteroids in Sepsis: An Updated Systematic Review and Meta-Analysis
    Rochwerg, Bram
    Oczkowski, Simon J.
    Siemieniuk, Reed A. C.
    Agoritsas, Thomas
    Belley-Cote, Emilie
    D'Aragon, Frederick
    Duan, Erick
    English, Shane
    Gossack-Keenan, Kira
    Alghuroba, Mashari
    Szczeklik, Wojciech
    Menon, Kusum
    Alhazzani, Waleed
    Sevransky, Jonathan
    Vandvik, Per Olav
    Annane, Djillali
    Guyatt, Gordon
    CRITICAL CARE MEDICINE, 2018, 46 (09) : 1411 - 1420
  • [38] Biomarkers for the Early Diagnosis of Sepsis in Burns Systematic Review and Meta-analysis
    Li, Andrew T.
    Moussa, Anthony
    Gus, Eduardo
    Paul, Eldho
    Yii, Erwin
    Romero, Lorena
    Lin, Zhiliang Caleb
    Padiglione, Alexander
    Lo, Cheng Hean
    Cleland, Heather
    Cheng, Allen C.
    ANNALS OF SURGERY, 2022, 275 (04) : 654 - 662
  • [39] Methylene blue in sepsis and septic shock: a systematic review and meta-analysis
    Ballarin, Raquel Simoes
    Lazzarin, Taline
    Zornoff, Leonardo
    Azevedo, Paula Schmidt
    Pereira, Filipe Welson Leal
    Tanni, Suzana Erico
    Minicucci, Marcos Ferreira
    FRONTIERS IN MEDICINE, 2024, 11
  • [40] Digital Alerting and Outcomes in Patients With Sepsis: Systematic Review and Meta-Analysis
    Joshi, Meera
    Ashrafian, Hutan
    Arora, Sonal
    Khan, Sadia
    Cooke, Graham
    Darzi, Ara
    JOURNAL OF MEDICAL INTERNET RESEARCH, 2019, 21 (12)