Systematic review and network meta-analysis of machine learning algorithms in sepsis prediction

被引:3
|
作者
Gao, Yulei [1 ,2 ,5 ]
Wang, Chaolan [1 ]
Shen, Jiaxin [3 ]
Wang, Ziyi [4 ]
Liu, Yancun [1 ]
Chai, Yanfen [1 ,2 ,5 ]
机构
[1] Tianjin Med Univ, Gen Hosp, Dept Emergency Med, Tianjin 300052, Peoples R China
[2] Tianjin Med Univ, Natl Med Emergency Team Poisoning, Gen Hosp, Tianjin 300052, Peoples R China
[3] Cangzhou Cent Hosp, Dept Intens Care Unit, Cangzhou 061001, Peoples R China
[4] Tsinghua Univ, Beijing Tsinghua Changgung Hosp, Sch Clin Med, Dept Gen Surg, Beijing 102218, Peoples R China
[5] Tianjin Med Univ, Dept Emergency Med, Gen Hosp, 154 Anshan Rd, Tianjin, Peoples R China
基金
中国国家自然科学基金;
关键词
Sepsis; Machine learning algorithms; Sensitivity; Specificity; Predictive accuracy; Network meta-analysis; DEFINITIONS; REGRESSION; MODEL;
D O I
10.1016/j.eswa.2023.122982
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Background: With the integration of artificial intelligence and clinical medicine, machine learning (ML) algorithms have been applied to develop sepsis predictive models for sepsis management. The purpose is to systematically summarize existing evidence to determine the effectiveness of ML algorithms in sepsis. Methods: We conducted a systematic electronic search of databases including PubMed, Cochrane Library, Embase, and the Web of Science, and included all case -control and cohort studies using terms reflecting sepsis and ML up to September 2023. statistical software STATA was used for network meta -analysis, and QUADAS-2 tool was used to assess the certainty of evidence. Results: The SUCRA results for sensitivity, specificity, and predictive accuracy of various models are as follows: DSPA (77.0 %) > Imbalance-XGBoost (72.9 %) > CNN + Bi-LSTM (69.7 %) > CNN (67.3 %) > LR (62.4 %) > Ensemble model (55.9 %) > RF (53.2 %) > ET (51.3 %) > XGBoost (49.1 %) > DNN (48.1 %) > MLP (47.5 %) > RBF (47.1 %) > KNN (45.8 %) > NB (33.3 %) > SVM (13.7 %) > Bi-LSTM (5.7 %); CNN (78.3 %) > CNN + BiLSTM (77.6 %) > DSPA (75.1 %) > ET (69 %) > Bi-LSTM (68.5 %) > MLP (51 %) > RBF (50.2 %) > KNN (47.3 %) > RF (47 %) > Ensemble Model (43.4 %) > XGBoost (38.1 %) > SVM (37.3 %) > NB (34.2 %) > DNN (31.1 %) > LR (30.4 %) > Imbalance-XGBoost (21.5 %); DSPA (85.9 %) > CNN + Bi-LSTM (82.6 %) > CNN (81.9 %) > Imbalance-XGBoost (76.8 %) > ET (67.8 %) > RF (51.1 %) > Ensemble model (47.7 %) > XGBoost (44.4 %) > LR (42.7 %) > MLP (38.1 %) > RBF (37.8 %) > KNN (37.3 %) > DNN(35.8 %) > Bi-LSTM(33.3 %) > NB(21.5 %) > SVM(15.3 %). Conclusions: DSPA and CNN may be the best ML algorithms for predicting sepsis. Imbalance-XGBoost algorithm outperformed other traditional ML algorithms in terms of sensitivity and predictive accuracy. This study has several implications for clinical practice and research, highlighting the potential benefits of using ML algorithms in sepsis management, particularly in improving sepsis detection and reducing mortality rates. Through our systematic review and network meta -analysis, we have provided a comprehensive and accurate assessment of the effectiveness of ML algorithms in sepsis prediction, emphasizing the need for further exploration and evaluation of these algorithms to advance sepsis management.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] Machine learning in the prediction of post-stroke cognitive impairment: a systematic review and meta-analysis
    Li, XiaoSheng
    Chen, Zongning
    Jiao, Hexian
    Wang, BinYang
    Yin, Hui
    Chen, LuJia
    Shi, Hongling
    Yin, Yong
    Qin, Dongdong
    FRONTIERS IN NEUROLOGY, 2023, 14
  • [22] Performance of machine learning algorithms for glioma segmentation of brain MRI: a systematic literature review and meta-analysis
    van Kempen, Evi J.
    Post, Max
    Mannil, Manoj
    Witkam, Richard L.
    Ter Laan, Mark
    Patel, Ajay
    Meijer, Frederick J. A.
    Henssen, Dylan
    EUROPEAN RADIOLOGY, 2021, 31 (12) : 9638 - 9653
  • [23] Fluid type and the use of renal replacement therapy in sepsis: a systematic review and network meta-analysis
    B. Rochwerg
    W. Alhazzani
    A Gibson
    C. M. Ribic
    A. Sindi
    D. Heels-Ansdell
    L. Thabane
    A. Fox-Robichaud
    L. Mbuagbaw
    W. Szczeklik
    F. Alshamsi
    S. Altayyar
    W. Ip
    G. Li
    M. Wang
    A. Włudarczyk
    Q. Zhou
    D. Annane
    D. J. Cook
    R. Jaeschke
    G. H. Guyatt
    Intensive Care Medicine, 2015, 41 : 1561 - 1571
  • [24] Fluid type and the use of renal replacement therapy in sepsis: a systematic review and network meta-analysis
    Rochwerg, B.
    Alhazzani, W.
    Gibson, A.
    Ribic, C. M.
    Sindi, A.
    Heels-Ansdell, D.
    Thabane, L.
    Fox-Robichaud, A.
    Mbuagbaw, L.
    Szczeklik, W.
    Alshamsi, F.
    Altayyar, S.
    Ip, W.
    Li, G.
    Wang, M.
    Wludarczyk, A.
    Zhou, Q.
    Annane, D.
    Cook, D. J.
    Jaeschke, R.
    Guyatt, G. H.
    INTENSIVE CARE MEDICINE, 2015, 41 (09) : 1561 - 1571
  • [25] Role of machine learning algorithms in suicide risk prediction: a systematic review-meta analysis of clinical studies
    Ehtemam, Houriyeh
    Esfahlani, Shabnam Sadeghi
    Sanaei, Alireza
    Ghaemi, Mohammad Mehdi
    Hajesmaeel-Gohari, Sadrieh
    Rahimisadegh, Rohaneh
    Bahaadinbeigy, Kambiz
    Ghasemian, Fahimeh
    Shirvani, Hassan
    BMC MEDICAL INFORMATICS AND DECISION MAKING, 2024, 24 (01)
  • [26] Machine learning for prognostic prediction in coronary artery disease with SPECT data: a systematic review and meta-analysis
    Cicek, Vedat
    Cikirikci, Ezgi Hasret Kozan
    Babaoglu, Mert
    Erdem, Almina
    Tur, Yalcin
    Mohamed, Mohamed Iesar
    Cinar, Tufan
    Savas, Hatice
    Bagci, Ulas
    EJNMMI RESEARCH, 2024, 14 (01):
  • [27] Groundwater Level Modeling with Machine Learning: A Systematic Review and Meta-Analysis
    Ahmadi, Arman
    Olyaei, Mohammadali
    Heydari, Zahra
    Emami, Mohammad
    Zeynolabedin, Amin
    Ghomlaghi, Arash
    Daccache, Andre
    Fogg, Graham E.
    Sadegh, Mojtaba
    WATER, 2022, 14 (06)
  • [28] Machine learning for lymph node metastasis prediction of in patients with gastric cancer: A systematic review and meta-analysis
    Li, Yilin
    Xie, Fengjiao
    Xiong, Qin
    Lei, Honglin
    Feng, Peimin
    FRONTIERS IN ONCOLOGY, 2022, 12
  • [29] Prediction of prognosis in COVID-19 patients using machine learning: A systematic review and meta-analysis
    Chen, Ruiyao
    Chen, Jiayuan
    Yang, Sen
    Luo, Shuqing
    Xiao, Zhongzhou
    Lu, Lu
    Liang, Bilin
    Liu, Sichen
    Shi, Huwei
    Xu, Jie
    INTERNATIONAL JOURNAL OF MEDICAL INFORMATICS, 2023, 177
  • [30] Machine learning in predicting antimicrobial resistance: a systematic review and meta-analysis
    Tang, Rui
    Luo, Rui
    Tang, Shiwei
    Song, Haoxin
    Chen, Xiujuan
    INTERNATIONAL JOURNAL OF ANTIMICROBIAL AGENTS, 2022, 60 (5-6)