Weakly Zero Divisor Graph of a Lattice

被引:2
作者
Kulal, Vikas [1 ]
Khairnar, Anil [2 ]
Masalkar, Krishnat [2 ]
Kadam, Lata [2 ]
机构
[1] MIT Art Design & Technol Univ, Sch Engn & Sci, Dept Math, Pune 412201, Maharastra, India
[2] Abasaheb Garware Coll, Dept Math, Pune 411004, Maharastra, India
来源
COMMUNICATIONS IN MATHEMATICS AND APPLICATIONS | 2023年 / 14卷 / 03期
关键词
Zero divisor graph; Base of the element; Atom; Planar;
D O I
10.26713/cma.v14i3.2455
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For a lattice L, we associate a graph WZG(L) called a weakly zero divisor graph of L. The vertex set of WZG(L) is Z *(L), where Z*(L) = {r is an element of L | r not equal 0, there exists s not equal 0 such that r <^> s = 0} and for any distinct u and v in Z*(L), u- v is an edge in WZG(L) if and only if there exists p is an element of Ann(u)\{0} and q is an element of Ann(v)\{0} such that p <^> q = 0. In this paper, we determined the diameter, girth, independence number and domination number of WZG(L). We characterized all lattices whose WZG(L) is complete bipartite or planar. Also, we find a condition so that WZG(L) is Eulerian or Hamiltonian. Finally, we study the affinity between the weakly zero divisor graph, the zero divisor graph and the annihilatorideal graph of lattices.
引用
收藏
页码:1167 / 1180
页数:14
相关论文
共 11 条
[1]  
Anderson D. F., 2021, GRAPHS RINGS
[2]   COLORING OF COMMUTATIVE RINGS [J].
BECK, I .
JOURNAL OF ALGEBRA, 1988, 116 (01) :208-226
[3]  
Birkhoff G., 1940, J. Symb. Log., V5, P155, DOI [10.2307/2268183, DOI 10.2307/2268183]
[4]   ZERO-DIVISOR GRAPH OF AN IDEAL OF A NEAR-RING [J].
Chelvam, T. Tamizh ;
Nithya, S. .
DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2013, 5 (01)
[5]  
Chelvam TT, 2014, TRANS COMB, V3, P51
[6]   The Zero-Divisor Graph of a Lattice [J].
Estaji, Ehsan ;
Khashyarmanesh, Kazem .
RESULTS IN MATHEMATICS, 2012, 61 (1-2) :1-11
[7]  
Grätzer G, 2011, LATTICE THEORY: FOUNDATION, P1, DOI 10.1007/978-3-0348-0018-1
[8]   Zero-Divisor Graphs of Laurent Polynomials and Laurent Power Series [J].
Khairnar, Anil ;
Waphare, B. N. .
ALGEBRA AND ITS APPLICATIONS, ICAA 2014, 2016, 174 :345-349
[9]  
Kulal A., 2022, PALESTINE J MATH, V11, P195
[10]   THE WEAKLY ZERO-DIVISOR GRAPH OF A COMMUTATIVE RING [J].
Nikmehr, Mohammad Javad ;
Azadi, Abdolreza ;
Nikandish, Reza .
REVISTA DE LA UNION MATEMATICA ARGENTINA, 2021, 62 (01) :105-116