Risk Prediction Model for Chronic Kidney Disease in Thailand Using Artificial Intelligence and SHAP

被引:2
作者
Tsai, Ming-Che [1 ,2 ]
Lojanapiwat, Bannakij [3 ]
Chang, Chi-Chang [4 ,5 ]
Noppakun, Kajohnsak [6 ,7 ]
Khumrin, Piyapong [8 ]
Li, Ssu-Hui [9 ]
Lee, Chih-Ying [10 ]
Lee, Hsi-Chieh [9 ]
Khwanngern, Krit [3 ]
机构
[1] Chung Shan Med Univ, Sch Med, Dept Emergency Med, Taichung 40201, Taiwan
[2] Chung Shan Med Univ Hosp, Dept Emergency Med, Taichung 40201, Taiwan
[3] Chiang Mai Univ, Fac Med, Chiang Mai 50200, Thailand
[4] Chung Shan Med Univ Hosp, Sch Med Informat & IT Off, Taichung 40201, Taiwan
[5] Ming Chuan Univ, Dept Informat Management, Taoyuan 33348, Taiwan
[6] Chiang Mai Univ, Fac Med, Dept Internal Med, Div Nephrol, Chiang Mai 50200, Thailand
[7] Chiang Mai Univ, Fac Pharm, Pharmacoepidemiol & Stat Res Ctr PESRC, Chiang Mai 50200, Thailand
[8] Chiang Mai Univ, Fac Med, Dept Family Med, Chiang Mai 50200, Thailand
[9] Natl Quemoy Univ, Dept Comp Sci & Informat Engn, Jinning 89250, Kinmen, Taiwan
[10] Natl Taiwan Univ, Coll Bioresources & Agr, Taipei 10663, Taiwan
关键词
chronic kidney disease; random forest; SHAP; Thailand; artificial intelligence;
D O I
10.3390/diagnostics13233548
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Chronic kidney disease (CKD) is a multifactorial, complex condition that requires proper management to slow its progression. In Thailand, 11.6 million people (17.5%) have CKD, with 5.7 million (8.6%) in the advanced stages and >100,000 requiring hemodialysis (2020 report). This study aimed to develop a risk prediction model for CKD in Thailand. Data from 17,100 patients were collected to screen for 14 independent variables selected as risk factors, using the IBK, Random Tree, Decision Table, J48, and Random Forest models to train the predictive models. In addition, we address the unbalanced category issue using the synthetic minority oversampling technique (SMOTE). The indicators of performance include classification accuracy, sensitivity, specificity, and precision. This study achieved an accuracy rate of 92.1% with the top-performing Random Forest model. Moreover, our empirical findings substantiate previous research through highlighting the significance of serum albumin, blood urea nitrogen, age, direct bilirubin, and glucose. Furthermore, this study used the SHapley Additive exPlanations approach to analyze the attributes of the top six critical factors and then extended the comparison to include dual-attribute factors. Finally, our proposed machine learning technique can be used to evaluate the effectiveness of these risk factors and assist in the development of future personalized treatment.
引用
收藏
页数:13
相关论文
共 35 条
  • [1] Comprehensive Performance Assessment of Deep Learning Models in Early Prediction and Risk Identification of Chronic Kidney Disease
    Akter, Shamima
    Habib, Ahsan
    Islam, Md Ashiqul
    Hossen, Md Sagar
    Fahim, Wasik Ahmmed
    Sarkar, Puza Rani
    Ahmed, Manik
    [J]. IEEE ACCESS, 2021, 9 : 165184 - 165206
  • [2] Deep Learning Model for the Detection of Real Time Breast Cancer Images Using Improved Dilation-Based Method
    Aldhyani, Theyazn H. H.
    Nair, Rajit
    Alzain, Elham
    Alkahtani, Hasan
    Koundal, Deepika
    [J]. DIAGNOSTICS, 2022, 12 (10)
  • [3] Towards Refined Classifications Driven by SHAP Explanations
    Arslan, Yusuf
    Lebichot, Bertrand
    Allix, Kevin
    Veiber, Lisa
    Lefebvre, Clement
    Boytsov, Andrey
    Goujon, Anne
    Bissyande, Tegawende F.
    Klein, Jacques
    [J]. MACHINE LEARNING AND KNOWLEDGE EXTRACTION, CD-MAKE 2022, 2022, 13480 : 68 - 81
  • [4] American Association of Clinical Endocrinology Clinical Practice Guideline: Developing a Diabetes Mellitus Comprehensive Care Plan-2022 Update
    Blonde, Lawrence
    Umpierrez, Guillermo E.
    Reddy, S. Sethu
    McGill, Janet B.
    Berga, Sarah L.
    Bush, Michael
    Chandrasekaran, Suchitra
    DeFronzo, Ralph A.
    Einhorn, Daniel
    Gardner, Thomas W.
    Garg, Rajesh
    Garvey, W. Timothy
    Hirsch, Irl B.
    Hurley, Daniel L.
    Izuora, Kenneth
    Kosiborod, Mikhail
    Olson, Darin
    Patel, Shailendra B.
    Pop-Busui, Rodica
    Sadhu, Archana R.
    Samson, Susan L.
    Stec, Carla
    Tamborlane, William V., Jr.
    Tuttle, Katherine R.
    Twining, Christine
    Vella, Adrian
    Vellanki, Priyathama
    Weber, Sandra L.
    [J]. ENDOCRINE PRACTICE, 2022, 28 (10) : 923 - 1049
  • [5] Charleonnan A, 2016, 2016 MAN INN TECHN I
  • [6] Prediction of Chronic Kidney Disease-A Machine Learning Perspective
    Chittora, Pankaj
    Chaurasia, Sandeep
    Chakrabarti, Prasun
    Kumawat, Gaurav
    Chakrabarti, Tulika
    Leonowicz, Zbigniew
    Jasinski, Michal
    Jasinski, Lukasz
    Gono, Radomir
    Jasinska, Elzbieta
    Bolshev, Vadim
    [J]. IEEE ACCESS, 2021, 9 : 17312 - 17334
  • [7] Aging and Renal Disease: Old Questions for New Challenges
    Chou, Yu-Hsiang
    Chen, Yung-Ming
    [J]. AGING AND DISEASE, 2021, 12 (02): : 515 - 528
  • [8] Structural and Functional Changes With the Aging Kidney
    Denic, Aleksandar
    Glassock, Richard J.
    Rule, Andrew D.
    [J]. ADVANCES IN CHRONIC KIDNEY DISEASE, 2016, 23 (01) : 19 - 28
  • [9] Machine Learning Techniques for Chronic Kidney Disease Risk Prediction
    Dritsas, Elias
    Trigka, Maria
    [J]. BIG DATA AND COGNITIVE COMPUTING, 2022, 6 (03)
  • [10] A theoretical distribution analysis of synthetic minority oversampling technique (SMOTE) for imbalanced learning
    Elreedy, Dina
    Atiya, Amir F.
    Kamalov, Firuz
    [J]. MACHINE LEARNING, 2024, 113 (07) : 4903 - 4923