Genetic architecture of head rice and rice chalky grain percentages using genome-wide association studies

被引:1
|
作者
Sanchez, Darlene L. [1 ]
Samonte, Stanley Omar PB. [1 ]
Wilson, Lloyd T. [1 ]
机构
[1] Texas A&M AgriLife Res Ctr, Beaumont, TX 77713 USA
来源
FRONTIERS IN PLANT SCIENCE | 2023年 / 14卷
关键词
rice; milled rice; head rice; chalky rice; grain quality; genome-wide association study; NIGHTTIME AIR TEMPERATURES; QUANTITATIVE TRAIT LOCI; MILLING QUALITY; COMPLEX TRAITS; CHALKINESS; PROTEIN; IDENTIFICATION; CULTIVARS; YIELDS; QTLS;
D O I
10.3389/fpls.2023.1274823
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
High head rice and low chalky grain percentages are key grain quality traits selected in developing rice cultivars. The objectives of this research were to characterize the phenotypic variation of head rice and chalky grain percentages in a diverse collection of rice accessions, identify single nucleotide polymorphism (SNP) markers associated with each of these traits using genome-wide association studies (GWAS), and identify putative candidate genes linked to the SNPs identified by GWAS. Diverse rice varieties, landraces, and breeding lines were grown at the Texas A&M AgriLife Research Center in Beaumont. Head rice percentages (HRP) and chalky grain percentages (CGP) of 195 and 199 non-waxy accessions were estimated in 2018 and 2019, respectively. Phenotypic data were analyzed along with 854,832 SNPs using three statistical models: mixed linear model (MLM), multi-locus mixed model (MLMM), and fixed and random model circulating probability unification (FarmCPU). Significant variations in HRP and CGP were observed between rice accessions. Two significant marker-trait associations (MTAs) were detected on chromosomes 1 and 2, respectively, based on best linear unbiased prediction (BLUP) values in 2018, while in 2019, one SNP was significantly associated with HRP in each of chromosomes 6, 8, 9, and 11, and two in chromosome 7. CGP was significantly associated with five SNPs located in chromosomes 2, 4, 6, and 8 in the 2018 study and ten SNPs in chromosomes 1, 2, 3, 4, 7, 8, 11, and 12 in the 2019 study. The SNPs are located within or linked to putative candidate genes involved in HRP and CGP. This study reports five and ten novel MTAs for HRP and CGP, respectively, while three and five MTAs co-located with previously reported quantitative trait loci for HRP and CGP, respectively. The validation of candidate genes for their roles in determining HRP and CGP is necessary to design functional molecular markers that can be used to effectively develop rice cultivars with desirable grain quality.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Dissection of the Genetic Basis of Rice Panicle Architecture Using a Genome-wide Association Study
    Bai, Shaoxing
    Hong, Jun
    Li, Ling
    Su, Su
    Li, Zhikang
    Wang, Wensheng
    Zhang, Fengli
    Liang, Wanqi
    Zhang, Dabing
    RICE, 2021, 14 (01)
  • [2] Dissection of the Genetic Architecture of Rice Tillering using a Genome-wide Association Study
    Jiang, Su
    Wang, Dan
    Yan, Shuangyong
    Liu, Shiming
    Liu, Bin
    Kang, Houxiang
    Wang, Guo-Liang
    RICE, 2019, 12 (1)
  • [3] Dissection of the Genetic Basis of Rice Panicle Architecture Using a Genome-wide Association Study
    Shaoxing Bai
    Jun Hong
    Ling Li
    Su Su
    Zhikang Li
    Wensheng Wang
    Fengli Zhang
    Wanqi Liang
    Dabing Zhang
    Rice, 2021, 14
  • [4] Dissection of the Genetic Architecture of Rice Tillering using a Genome-wide Association Study
    Su Jiang
    Dan Wang
    Shuangyong Yan
    Shiming Liu
    Bin Liu
    Houxiang Kang
    Guo-Liang Wang
    Rice, 2019, 12
  • [5] Deciphering the Genetic Architecture of Color Variation in Whole Grain Rice by Genome-Wide Association
    Wang, Wenjun
    Qiu, Xianjin
    Wang, Ziqi
    Xie, Tianyi
    Sun, Wenqiang
    Xu, Jianlong
    Zhang, Fan
    Yu, Sibin
    PLANTS-BASEL, 2023, 12 (04):
  • [6] Multi-model genome-wide association studies for appearance quality in rice
    Sachdeva, Supriya
    Singh, Rakesh
    Maurya, Avantika
    Singh, Vikas Kumar
    Singh, Uma Maheshwar
    Kumar, Arvind
    Singh, Gyanendra Pratap
    FRONTIERS IN PLANT SCIENCE, 2024, 14
  • [7] Genetic dissection of rice appearance quality and cooked rice elongation by genome-wide association study
    Qiu, Xianjin
    Yang, Jing
    Zhang, Fan
    Niu, Yanan
    Zhao, Xiuqing
    Shen, Congcong
    Chen, Kai
    Teng, Sheng
    Xu, Jianlong
    CROP JOURNAL, 2021, 9 (06): : 1470 - 1480
  • [8] Dissecting the Genetic Basis of Preharvest Sprouting in Rice Using a Genome-Wide Association Study
    Yi, Xin
    Hua, Wanyi
    Zhang, Ziqiang
    Liu, Lei
    Liu, Xi
    Liu, Fuxia
    Tang, Tang
    Yang, Hengxuan
    Zhang, Jingtian
    Wu, Depeng
    Zhao, Xiangxiang
    JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY, 2025, 73 (05) : 3257 - 3267
  • [9] Rapid prediction of head rice yield and grain shape for genome-wide association study in indica rice
    Liu, Chang
    Song, Jiling
    Wang, Yuechan
    Huang, Xirui
    Zhang, Fan
    Wang, Wensheng
    Xu, Jianlong
    Zhang, Yu
    Yu, Hongxu
    Pang, Yuehan
    Bao, Jinsong
    JOURNAL OF CEREAL SCIENCE, 2020, 96
  • [10] Genome-Wide Association Study of Rice Grain Shape and Chalkiness in a Worldwide Collection of Xian Accessions
    Wang, Nansheng
    Chen, Huguang
    Qian, Yingzhi
    Liang, Zhaojie
    Zheng, Guiqiang
    Xiang, Jun
    Feng, Ting
    Li, Min
    Zeng, Wei
    Bao, Yaling
    Liu, Erbao
    Zhang, Chaopu
    Xu, Jianlong
    Shi, Yingyao
    PLANTS-BASEL, 2023, 12 (03):