Spin diffusion in a perturbed isotropic Heisenberg spin chain

被引:9
作者
Nandy, S. [1 ]
Lenarcic, Z. [1 ]
Ilievski, E. [2 ]
Mierzejewski, M. [3 ]
Herbrych, J. [3 ]
Prelovsek, P. [1 ]
机构
[1] Jozef Stefan Inst, SI-1000 Ljubljana, Slovenia
[2] Univ Ljubljana, Fac Math & Phys, Jadranska Ulica 19, Ljubljana 1000, Slovenia
[3] Wroclaw Univ Sci & Technol, Fac Fundamental Problems Technol, Dept Theoret Phys, PL-50370 Wroclaw, Poland
关键词
TRANSPORT;
D O I
10.1103/PhysRevB.108.L081115
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The isotropic Heisenberg chain represents a particular case of an integrable many-body system exhibiting superdiffusive spin transport at finite temperatures. Here, we show that this model has distinct properties also at finite magnetization m not equal 0, even upon introducing the SU(2) invariant perturbations. Specifically, we observe nonmonotonic dependence of the diffusion constant D-0(Delta) on the spin anisotropy Delta, with a pronounced maximum at Delta = 1. The latter dependence remains true also in the zero magnetization sector, with superdiffusion at Delta = 1 that is remarkably stable against isotropic perturbation (at least in finite-size systems), consistent with recent experiments with cold atoms.
引用
收藏
页数:6
相关论文
共 49 条
[41]   Detection of Kardar-Parisi-Zhang hydrodynamics in a quantum Heisenberg spin-1/2 chain [J].
Scheie, A. ;
Sherman, N. E. ;
Dupont, M. ;
Nagler, S. E. ;
Stone, M. B. ;
Granroth, G. E. ;
Moore, J. E. ;
Tennant, D. A. .
NATURE PHYSICS, 2021, 17 (06) :726-+
[42]   Matrix product density operators:: Simulation of finite-temperature and dissipative systems -: art. no. 207204 [J].
Verstraete, F ;
García-Ripoll, JJ ;
Cirac, JI .
PHYSICAL REVIEW LETTERS, 2004, 93 (20) :207204-1
[43]   Quantum gas microscopy of Kardar-Parisi-Zhang superdiffusion [J].
Wei, David ;
Rubio-Abadal, Antonio ;
Ye, Bingtian ;
Machado, Francisco ;
Kemp, Jack ;
Srakaew, Kritsana ;
Hollerith, Simon ;
Rui, Jun ;
Gopalakrishnan, Sarang ;
Yao, Norman Y. ;
Bloch, Immanuel ;
Zeiher, Johannes .
SCIENCE, 2022, 376 (6594) :716-+
[44]   Weak Integrability Breaking: Chaos with Integrability Signature in Coherent Diffusion [J].
Znidaric, Marko .
PHYSICAL REVIEW LETTERS, 2020, 125 (18)
[45]   Spin Transport in a One-Dimensional Anisotropic Heisenberg Model [J].
Znidaric, Marko .
PHYSICAL REVIEW LETTERS, 2011, 106 (22)
[46]   Transport and conservation laws [J].
Zotos, X ;
Naef, F ;
Prelovsek, P .
PHYSICAL REVIEW B, 1997, 55 (17) :11029-11032
[47]   Finite temperature Drude weight of the one-dimensional spin-1/2 Heisenberg model [J].
Zotos, X .
PHYSICAL REVIEW LETTERS, 1999, 82 (08) :1764-1767
[48]   Evidence for ideal insulating or conducting state in a one-dimensional integrable system [J].
Zotos, X ;
Prelovsek, P .
PHYSICAL REVIEW B, 1996, 53 (03) :983-986
[49]   Mixed-state dynamics in one-dimensional quantum lattice systems: A time-dependent superoperator renormalization algorithm [J].
Zwolak, M ;
Vidal, G .
PHYSICAL REVIEW LETTERS, 2004, 93 (20) :207205-1