Spin diffusion in a perturbed isotropic Heisenberg spin chain

被引:7
作者
Nandy, S. [1 ]
Lenarcic, Z. [1 ]
Ilievski, E. [2 ]
Mierzejewski, M. [3 ]
Herbrych, J. [3 ]
Prelovsek, P. [1 ]
机构
[1] Jozef Stefan Inst, SI-1000 Ljubljana, Slovenia
[2] Univ Ljubljana, Fac Math & Phys, Jadranska Ulica 19, Ljubljana 1000, Slovenia
[3] Wroclaw Univ Sci & Technol, Fac Fundamental Problems Technol, Dept Theoret Phys, PL-50370 Wroclaw, Poland
关键词
TRANSPORT;
D O I
10.1103/PhysRevB.108.L081115
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The isotropic Heisenberg chain represents a particular case of an integrable many-body system exhibiting superdiffusive spin transport at finite temperatures. Here, we show that this model has distinct properties also at finite magnetization m not equal 0, even upon introducing the SU(2) invariant perturbations. Specifically, we observe nonmonotonic dependence of the diffusion constant D-0(Delta) on the spin anisotropy Delta, with a pronounced maximum at Delta = 1. The latter dependence remains true also in the zero magnetization sector, with superdiffusion at Delta = 1 that is remarkably stable against isotropic perturbation (at least in finite-size systems), consistent with recent experiments with cold atoms.
引用
收藏
页数:6
相关论文
共 49 条
[1]  
[Anonymous], 2023, Phys. Rev. B, V108, DOI [10.1103/PhysRevB.108.L081115, DOI 10.1103/PHYSREVB.108.L081115]
[2]   Hydrodynamics of weak integrability breaking [J].
Bastianello, Alvise ;
De Luca, Andrea ;
Vasseur, Romain .
JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2021, 2021 (11)
[3]   Finite-temperature transport in one-dimensional quantum lattice models [J].
Bertini, B. ;
Heidrich-Meisner, F. ;
Karrasch, C. ;
Prosen, T. ;
Steinigeweg, R. ;
Znidaric, M. .
REVIEWS OF MODERN PHYSICS, 2021, 93 (02)
[4]   Transport in Out-of-Equilibrium XXZ Chains: Exact Profiles of Charges and Currents [J].
Bertini, Bruno ;
Collura, Mario ;
De Nardis, Jacopo ;
Fagotti, Maurizio .
PHYSICAL REVIEW LETTERS, 2016, 117 (20)
[5]   Metal theory [J].
Bethe, H. .
ZEITSCHRIFT FUR PHYSIK, 1931, 71 (3-4) :205-226
[6]   Superdiffusion in spin chains [J].
Bulchandani, Vir B. ;
Gopalakrishnan, Sarang ;
Ilievski, Enej .
JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2021, 2021 (08)
[7]   Kardar-Parisi-Zhang universality from soft gauge modes [J].
Bulchandani, Vir B. .
PHYSICAL REVIEW B, 2020, 101 (04)
[8]   Bethe-Boltzmann hydrodynamics and spin transport in the XXZ chain [J].
Bulchandani, Vir B. ;
Vasseur, Romain ;
Karrasch, Christoph ;
Moore, Joel E. .
PHYSICAL REVIEW B, 2018, 97 (04)
[9]   INTEGRABILITY AND IDEAL CONDUCTANCE AT FINITE TEMPERATURES [J].
CASTELLA, H ;
ZOTOS, X ;
PRELOVSEK, P .
PHYSICAL REVIEW LETTERS, 1995, 74 (06) :972-975
[10]   Emergent Hydrodynamics in Integrable Quantum Systems Out of Equilibrium [J].
Castro-Alvaredo, Olalla A. ;
Doyon, Benjamin ;
Yoshimura, Takato .
PHYSICAL REVIEW X, 2016, 6 (04)