A Novel Hybrid Method Based on the Marine Predators Algorithm and Adaptive Neuro-Fuzzy Inference System for the Identification of Nonlinear Systems

被引:5
作者
Kaya, Ceren Bastemur [1 ]
机构
[1] Nevsehir Haci Bektas Veli Univ, Nevsehir Vocat Sch, Dept Comp Technol, TR-50300 Nevsehir, Turkiye
来源
SYMMETRY-BASEL | 2023年 / 15卷 / 09期
关键词
marine predators algorithm; neuro-fuzzy; ANFIS; nonlinear systems; system identification; swarm intelligence; symmetry in nonlinear systems; TRAINING ANFIS;
D O I
10.3390/sym15091765
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this study, a hybrid method based on the marine predators algorithm (MPA) and adaptive neuro-fuzzy inference system (ANFIS) is presented to identify nonlinear systems exhibiting symmetrical or asymmetrical behavior. In other words, the antecedent and conclusion parameters of the ANFIS are adjusted by the MPA. The performance of the MPA is evaluated on eight nonlinear systems. The mean squared error is used as the error metric. Successful results were obtained on the eight systems. The best mean training error values belonging to the eight systems are 1.6 x 10-6, 3.2 x 10-3, 1.5 x 10-5, 9.2 x 10-6, 3.2 x 10-5, 2.3 x 10-3, 1.7 x 10-5, and 8.7 x 10-6. In the ANFIS training carried out to solve the related problems, the performance of the MPA was compared with the butterfly optimization algorithm, the flower pollination algorithm, moth-flame optimization, the multi-verse optimizer, the crystal structure algorithm, the dandelion optimizer, the RIME algorithm, and the salp swarm algorithm. The results have shown that the performance of the MPA mostly outperforms other algorithms in both training and testing processes.
引用
收藏
页数:16
相关论文
共 40 条
[1]   An Efficient Marine Predators Algorithm for Feature Selection [J].
Abd Elminaam, Diaa Salama ;
Nabil, Ayman ;
Ibraheem, Shimaa A. ;
Houssein, Essam H. .
IEEE ACCESS, 2021, 9 :60136-60153
[2]   Parameter estimation of photovoltaic models using an improved marine predators algorithm [J].
Abdel-Basset, Mohamed ;
El-Shahat, Doaa ;
Chakrabortty, Ripon K. ;
Ryan, Michael .
ENERGY CONVERSION AND MANAGEMENT, 2021, 227
[3]   A Hybrid Krill-ANFIS Model for Wind Speed Forecasting [J].
Ahmed, Khaled ;
Ewees, Ahmed A. ;
Abd El Aziz, Mohamed ;
Hassanien, Aboul Ella ;
Gaber, Tarek ;
Tsai, Pei-Wei ;
Pan, Jeng-Shyang .
PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON ADVANCED INTELLIGENT SYSTEMS AND INFORMATICS 2016, 2017, 533 :365-372
[4]   Marine Predators Algorithm: A Review [J].
Al-Betar, Mohammed Azmi ;
Awadallah, Mohammed A. ;
Makhadmeh, Sharif Naser ;
Alyasseri, Zaid Abdi Alkareem ;
Al-Naymat, Ghazi ;
Mirjalili, Seyedali .
ARCHIVES OF COMPUTATIONAL METHODS IN ENGINEERING, 2023, 30 (05) :3405-3435
[5]   Boosted ANFIS model using augmented marine predator algorithm with mutation operators for wind power forecasting [J].
Al-qaness, Mohammed A. A. ;
Ewees, Ahmed A. ;
Fan, Hong ;
Abualigah, Laith ;
Abd Elaziz, Mohamed .
APPLIED ENERGY, 2022, 314
[6]   Efficient artificial intelligence forecasting models for COVID-19 outbreak in Russia and Brazil [J].
Al-qaness, Mohammed A. A. ;
Saba, Amal, I ;
Elsheikh, Ammar H. ;
Abd Elaziz, Mohamed ;
Ibrahim, Rehab Ali ;
Lu, Songfeng ;
Hemedan, Ahmed Abdelmonem ;
Shanmugan, S. ;
Ewees, Ahmed A. .
PROCESS SAFETY AND ENVIRONMENTAL PROTECTION, 2021, 149 :399-409
[7]   Marine Predators Algorithm for Forecasting Confirmed Cases of COVID-19 in Italy, USA, Iran and Korea [J].
Al-qaness, Mohammed A. A. ;
Ewees, Ahmed A. ;
Fan, Hong ;
Abualigah, Laith ;
Abd Elaziz, Mohamed .
INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH, 2020, 17 (10)
[8]   Optimized ANFIS Model Using Aquila Optimizer for Oil Production Forecasting [J].
AlRassas, Ayman Mutahar ;
Al-qaness, Mohammed A. A. ;
Ewees, Ahmed A. ;
Ren, Shaoran ;
Abd Elaziz, Mohamed ;
Damasevicius, Robertas ;
Krilavicius, Tomas .
PROCESSES, 2021, 9 (07)
[9]   Butterfly optimization algorithm: a novel approach for global optimization [J].
Arora, Sankalap ;
Singh, Satvir .
SOFT COMPUTING, 2019, 23 (03) :715-734
[10]  
Canayaz M., 2019, INT J INTELL SYST AP, V7, P133, DOI [10.18201/ijisae.2019355375, DOI 10.18201/IJISAE.2019355375]