Rock burst has always been a major problem in deep underground engineering with high stress, and rock burst strength evaluation has become an important research topic. To effectively predict the rock burst hazard in underground rock mass engineering, a cloud model (CM) rock burst intensity evaluation method based on the CRITIC method and order relation analysis method (G1) was proposed in this paper. First, a rock's uniaxial compressive strength & sigma;c, tangential stress & sigma;& theta;, uniaxial tensile strength & sigma;t, ratio of uniaxial compressive strength to tensile strength & sigma;c/& sigma;t (brittleness coefficient), ratio of tangential stress to uniaxial compressive strength & sigma;& theta;/& sigma;c (stress coefficient), elastic deformation energy index Wet, and depth of cover H were selected as evaluation indices of rock burst intensity. Ninety-five groups of rock burst measured data at home and abroad were selected, and the objective weight and subjective weight of each index were calculated by using the CRITIC method and G1 method, respectively. The comprehensive weight was determined according to the combined weighting method of game theory, and the sensitivity of each evaluation index was analyzed. By utilizing a forward cloud generator, the membership degrees of different rock burst grades were calculated, and then the rock burst intensity grades of the samples were evaluated and compared with the evaluation results of the CRITIC-CM method and G1-CM method and the actual grades. Finally, the rock burst classification ability of the model was analyzed. To better verify the accuracy and reliability of this model, the rock burst case of the W39 line in the Chengchao Iron Mine was analyzed by using this model. The research results show that the rock burst evaluation results based on CRITIC-G1-CM are basically consistent with the actual rock burst grade, and the rock burst intensity grade evaluation model has good practicability and reliability.