Diffractive light-trapping transparent electrodes using zero-order suppression

被引:1
作者
Sun, Mengdi [1 ]
Huang, Di [2 ]
Golvari, Pooria [4 ]
Kuebler, Stephen M. M. [2 ,4 ,5 ]
Delfyett, Peter J. J. [2 ,6 ]
Kik, Pieter G. G. [2 ,3 ]
机构
[1] Virginia Tech, Bradley Dept Elect & Comp Engn, Arlington, VA 22203 USA
[2] Univ Cent Florida, Coll Opt & Photon, CREOL, Orlando, FL 32816 USA
[3] Univ Cent Florida, Phys Dept, Orlando, FL 32816 USA
[4] Univ Cent Florida, Chem Dept, Orlando, FL 32816 USA
[5] Univ Cent Florida, Dept Mat Sci & Engn, Orlando, FL 32816 USA
[6] Univ Cent Florida, Dept Elect & Comp Engn, Orlando, FL 32816 USA
基金
美国国家科学基金会;
关键词
binary diffractive gratings; light trapping; nanofabrication; transparent electrodes; SOLAR-CELLS;
D O I
10.1515/nanoph-2023-0205
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
A light-trapping transparent electrode design based on sub-surface binary dielectric gratings is introduced and demonstrated experimentally. The structure consists of metallic wires patterned with an array of silicon nanobeams. Optimization of the grating geometry achieves selective suppression of zero-order diffraction, while enabling redirection of incident light to an angle that exceeds critical angle of the local environment. Subsequent total-internal reflection allows recovery of light initially incident on the patterned metal wire. Experiments involving amorphous silicon gratings patterned on gold wires demonstrate a light-trapping efficiency exceeding 41 %. Modeling of crystalline silicon nanobeams on silver wires suggests that a shadowing loss reduction of 82 % is feasible. The achievement of a large shadowing reduction using a coplanar structure with high manufacturing tolerance and a polarization-insensitive optical response makes this design a promising candidate for integration in a wide range of real-world photonic devices.
引用
收藏
页码:3545 / 3552
页数:8
相关论文
共 32 条
  • [1] .3ds.com, CST MICR STUD
  • [2] DIELECTRIC FUNCTIONS AND OPTICAL-PARAMETERS OF SI, GE, GAP, GAAS, GASB, INP, INAS, AND INSB FROM 1.5 TO 6.0 EV
    ASPNES, DE
    STUDNA, AA
    [J]. PHYSICAL REVIEW B, 1983, 27 (02) : 985 - 1009
  • [3] SHADING LOSSES OF SOLAR-CELL METAL GRIDS
    BLAKERS, AW
    [J]. JOURNAL OF APPLIED PHYSICS, 1992, 71 (10) : 5237 - 5241
  • [4] THE DIELECTRIC LAMELLAR DIFFRACTION GRATING
    BOTTEN, IC
    CRAIG, MS
    MCPHEDRAN, RC
    ADAMS, JL
    ANDREWARTHA, JR
    [J]. OPTICA ACTA, 1981, 28 (03): : 413 - 428
  • [5] Microfiber Optic Arrays as Top Coatings for Front-Contact Solar Cells toward Mitigation of Shading Loss
    Chen, Fu-Hao
    Biria, Saeid
    Li, Hansheng
    Hosein, Ian D.
    [J]. ACS APPLIED MATERIALS & INTERFACES, 2019, 11 (50) : 47422 - 47427
  • [6] Increasing light capture in silicon solar cells with encapsulants incorporating air prisms to reduce metallic contact losses
    Chen, Fu-Hao
    Pathreeker, Shreyas
    Kaur, Jaspreet
    Hosein, Ian D.
    [J]. OPTICS EXPRESS, 2016, 24 (22): : A1419 - A1430
  • [7] Realizing Ultrahigh Mechanical Flexibility and >15% Efficiency of Flexible Organic Solar Cells via a "Welding" Flexible Transparent Electrode
    Chen, Xiaobin
    Xu, Guiying
    Zeng, Guang
    Gu, Hongwei
    Chen, Haiyang
    Xu, Haitao
    Yao, Huifeng
    Li, Yaowen
    Hou, Jianhui
    Li, Yongfang
    [J]. ADVANCED MATERIALS, 2020, 32 (14)
  • [8] Silver Nanowire Networks as Flexible, Transparent, Conducting Films: Extremely High DC to Optical Conductivity Ratios
    De, Sukanta
    Higgins, Thomas M.
    Lyons, Philip E.
    Doherty, Evelyn M.
    Nirmalraj, Peter N.
    Blau, Werner J.
    Boland, John J.
    Coleman, Jonathan N.
    [J]. ACS NANO, 2009, 3 (07) : 1767 - 1774
  • [9] Ellmer K, 2012, NAT PHOTONICS, V6, P808, DOI [10.1038/nphoton.2012.282, 10.1038/NPHOTON.2012.282]
  • [10] High-performance silver nanowires transparent conductive electrodes fabricated using manufacturing-ready high-speed photonic sinterization solutions
    Gerlein, Luis Felipe
    Benavides-Guerrero, Jaime Alberto
    Cloutier, Sylvain G.
    [J]. SCIENTIFIC REPORTS, 2021, 11 (01)