The impacts of Brewer-Dobson and Hadley circulation on tropospheric ozone variations over three city clusters in China

被引:1
作者
Zhang, Xin [1 ,2 ,3 ]
Zhang, Xingying [2 ,3 ]
Zhou, Lihua [4 ]
Cao, Xifeng [1 ,2 ,3 ,5 ]
Deng, Zhili [1 ,2 ,3 ]
Jiang, Yuhan [1 ,2 ,3 ]
机构
[1] China Acad Meteorol Sci, China Meteorol Adm, Beijing 100081, Peoples R China
[2] China Meteorol Adm CMA, Natl Satellite Meteorol Ctr, Natl Ctr Space Weather, Key Lab Radiometr Calibrat & Validat Environm Sate, Beijing 100081, Peoples R China
[3] China Meteorol Adm CMA, Innovat Ctr FengYun Meteorol Satellite FYSIC, Beijing 100081, Peoples R China
[4] Tsinghua Univ, Dept Earth Syst Sci, Beijing 100084, Peoples R China
[5] Fudan Univ, Dept Atmospher & Ocean Sci, Shanghai 200438, Peoples R China
基金
中国国家自然科学基金;
关键词
China; Tropospheric column ozone; Brewer-Dobson circulation; Hadley circulation; CCM; POLEWARD EXPANSION; CLIMATE-CHANGE; SURFACE OZONE; SATELLITE MEASUREMENTS; NORTHERN CHINA; CHEMISTRY; STRATOSPHERE; POLLUTION; TRENDS; VARIABILITY;
D O I
10.1016/j.atmosres.2023.106901
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
The positive trend of tropospheric column ozone (TCO) in China has been confirmed by numerous observations, particularly in the rapidly developing city clusters such as Beijing-Tianjin-Hebei (BTH), the Yangtze River Delta (YRD) and the Pearl River Delta (PRD). An unignorable but poorly known function may be played by the BrewerDobson circulation (BDC) and the Hadley circulation (HC), both of which are in their strengthening phase. This study discusses their connection to TCO in these three city clusters based on a novel and powerful causal analysis method Convergent Cross Mapping (CCM). It revealed that both BDC and HC exerted substantial causal effects on the variations of the TCO in BTH, the YRD, and the PRD. The upwelling moving northward in the summer substantially lowered TCO in the PRD, contributing to the difference in the TCO annual cycle characteristics between northern and southern China. Besides, CCM distinguished that hemispheric HC impacts TCO greatly more than total HC, and the most essential branches of BDC were stratospheric or shallow branches. The BDC and HC indices determined by CCM were used for building a multiple linear regression model, which assessed their importance for long-term changes in regional TCO. The intensity of BDC is the most important influencing factor in each region, particularly in the YRD. BTH is mainly affected by the intensity of the two meridian circulations. The influence of the widths of meridional circulation upwellings on TCO in the PRD cannot be ignored. Furthermore, TCO displayed significant positive trends during 2005-2020, with rates of 2.3 & PLUSMN; 0.4, 2.5 & PLUSMN; 0.4, and 2.7 & PLUSMN; 0.5 DU/decade in BTH, the YRD, and the PRD, respectively.
引用
收藏
页数:12
相关论文
共 72 条
[21]   Ozone pollution over China and India: seasonality and sources [J].
Gao, Meng ;
Gao, Jinhui ;
Zhu, Bin ;
Kumar, Rajesh ;
Lu, Xiao ;
Song, Shaojie ;
Zhang, Yuzhong ;
Jia, Beixi ;
Wang, Peng ;
Beig, Gufran ;
Hu, Jianlin ;
Ying, Qi ;
Zhang, Hongliang ;
Sherman, Peter ;
McElroy, Michael B. .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2020, 20 (07) :4399-4414
[22]   Tropospheric Ozone Assessment Report: Present-day distribution and trends of tropospheric ozone relevant to climate and global atmospheric chemistry model evaluation [J].
Gaudel, A. ;
Cooper, O. R. ;
Ancellet, G. ;
Barret, B. ;
Boynard, A. ;
Burrows, J. P. ;
Clerbaux, C. ;
Coheur, P. -F. ;
Cuesta, J. ;
Cuevas, E. ;
Doniki, S. ;
Dufour, G. ;
Ebojie, F. ;
Foret, G. ;
Garcia, O. ;
Granados-Munoz, M. J. ;
Hannigan, J. W. ;
Hase, F. ;
Hassler, B. ;
Huang, G. ;
Hurtmans, D. ;
Jaffe, D. ;
Jones, N. ;
Kalabokas, P. ;
Kerridge, B. ;
Kulawik, S. ;
Latter, B. ;
Leblanc, T. ;
Le Flochmoen, E. ;
Lin, W. ;
Liu, J. ;
Liu, X. ;
Mahieu, E. ;
McClure-Begley, A. ;
Neu, J. L. ;
Osman, M. ;
Palm, M. ;
Petetin, H. ;
Petropavlovskikh, I. ;
Querel, R. ;
Rahpoe, N. ;
Rozanov, A. ;
Schultz, M. G. ;
Schwab, J. ;
Siddans, R. ;
Smale, D. ;
Steinbacher, M. ;
Tanimoto, H. ;
Tarasick, D. W. ;
Thouret, V. .
ELEMENTA-SCIENCE OF THE ANTHROPOCENE, 2018, 6
[23]   INVESTIGATING CAUSAL RELATIONS BY ECONOMETRIC MODELS AND CROSS-SPECTRAL METHODS [J].
GRANGER, CWJ .
ECONOMETRICA, 1969, 37 (03) :424-438
[24]   Ozone effects on plants in natural ecosystems [J].
Grulke, N. E. ;
Heath, R. L. .
PLANT BIOLOGY, 2020, 22 :12-37
[25]  
Hilt D. E., 1977, RIDGE COMPUTER PROGR
[26]  
HOLTON JR, 1990, J ATMOS SCI, V47, P392, DOI 10.1175/1520-0469(1990)047<0392:OTGEOM>2.0.CO
[27]  
2
[28]   STRATOSPHERE-TROPOSPHERE EXCHANGE [J].
HOLTON, JR ;
HAYNES, PH ;
MCINTYRE, ME ;
DOUGLASS, AR ;
ROOD, RB ;
PFISTER, L .
REVIEWS OF GEOPHYSICS, 1995, 33 (04) :403-439
[29]   Diagnosing the stratosphere-to-troposphere flux of ozone in a chemistry transport model [J].
Hsu, J ;
Prather, MJ ;
Wild, O .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2005, 110 (D19) :1-12
[30]   Stratospheric variability and tropospheric ozone [J].
Hsu, Juno ;
Prather, Michael J. .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2009, 114 :D06102