MD-Ligand-Receptor: A High-Performance Computing Tool for Characterizing Ligand-Receptor Binding Interactions in Molecular Dynamics Trajectories

被引:22
作者
Pieroni, Michele [1 ]
Madeddu, Francesco [1 ]
Di Martino, Jessica [2 ]
Arcieri, Manuel [3 ]
Parisi, Valerio [4 ]
Bottoni, Paolo [1 ]
Castrignano, Tiziana [2 ]
机构
[1] Sapienza Univ Rome, Dept Comp Sci, V Regina Elena 295, I-00161 Rome, Italy
[2] Tuscia Univ, Dept Ecol & Biol Sci, Viale Univ Snc, I-01100 Viterbo, Italy
[3] Tech Univ Denmark, Dept Hlth Technol, Anker Engelunds Vej 101, DK-2800 Lyngby, Denmark
[4] Sapienza Univ Rome, Dept Phys, P Aldo Moro 5, I-00185 Rome, Italy
关键词
molecular dynamics; protein-ligand interactions; nucleic acid-ligand interactions; computational modeling of molecular systems; HIGH-THROUGHPUT; SIMULATIONS; DOCKING; GROMACS; DESIGN; PREDICTION; HYDRATION; COMPLEX; UPDATE; CHARMM;
D O I
10.3390/ijms241411671
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Molecular dynamics simulation is a widely employed computational technique for studying the dynamic behavior of molecular systems over time. By simulating macromolecular biological systems consisting of a drug, a receptor and a solvated environment with thousands of water molecules, MD allows for realistic ligand-receptor binding interactions (lrbi) to be studied. In this study, we present MD-ligand-receptor (MDLR), a state-of-the-art software designed to explore the intricate interactions between ligands and receptors over time using molecular dynamics trajectories. Unlike traditional static analysis tools, MDLR goes beyond simply taking a snapshot of ligand-receptor binding interactions (lrbi), uncovering long-lasting molecular interactions and predicting the time-dependent inhibitory activity of specific drugs. With MDLR, researchers can gain insights into the dynamic behavior of complex ligand-receptor systems. Our pipeline is optimized for high-performance computing, capable of efficiently processing vast molecular dynamics trajectories on multicore Linux servers or even multinode HPC clusters. In the latter case, MDLR allows the user to analyze large trajectories in a very short time. To facilitate the exploration and visualization of lrbi, we provide an intuitive Python notebook (Jupyter), which allows users to examine and interpret the results through various graphical representations.
引用
收藏
页数:16
相关论文
共 64 条
[1]   Big Data in metagenomics: Apache Spark vs MPI [J].
Abuin, Jose M. ;
Lopes, Nuno ;
Ferreira, Luis ;
Pena, Tomas F. ;
Schmidt, Bertil .
PLOS ONE, 2020, 15 (10)
[2]   COVID-19: Discovery, diagnostics and drug development [J].
Asselah, Tarik ;
Durantel, David ;
Pasmant, Eric ;
Lau, George ;
Schinazi, Raymond F. .
JOURNAL OF HEPATOLOGY, 2021, 74 (01) :168-184
[3]  
Bartolini B, 2011, NEW MICROBIOL, V34, P391
[4]   Artemisinin Derivatives with Antimelanoma Activity Show Inhibitory Effect against Human DNA Topoisomerase 1 [J].
Botta, Lorenzo ;
Filippi, Silvia ;
Zippilli, Claudio ;
Cesarini, Silvia ;
Bizzarri, Bruno Mattia ;
Cirigliano, Angela ;
Rinaldi, Teresa ;
Paiardini, Alessandro ;
Fiorucci, Diego ;
Saladino, Raffaele ;
Negri, Rodolfo ;
Benedetti, Pietro .
ACS MEDICINAL CHEMISTRY LETTERS, 2020, 11 (05) :1035-1040
[5]   CHARMM: The Biomolecular Simulation Program [J].
Brooks, B. R. ;
Brooks, C. L., III ;
Mackerell, A. D., Jr. ;
Nilsson, L. ;
Petrella, R. J. ;
Roux, B. ;
Won, Y. ;
Archontis, G. ;
Bartels, C. ;
Boresch, S. ;
Caflisch, A. ;
Caves, L. ;
Cui, Q. ;
Dinner, A. R. ;
Feig, M. ;
Fischer, S. ;
Gao, J. ;
Hodoscek, M. ;
Im, W. ;
Kuczera, K. ;
Lazaridis, T. ;
Ma, J. ;
Ovchinnikov, V. ;
Paci, E. ;
Pastor, R. W. ;
Post, C. B. ;
Pu, J. Z. ;
Schaefer, M. ;
Tidor, B. ;
Venable, R. M. ;
Woodcock, H. L. ;
Wu, X. ;
Yang, W. ;
York, D. M. ;
Karplus, M. .
JOURNAL OF COMPUTATIONAL CHEMISTRY, 2009, 30 (10) :1545-1614
[6]   New approaches for computing ligand-receptor binding kinetics [J].
Bruce, Neil J. ;
Ganotra, Gaurav K. ;
Kokh, Daria B. ;
Sadiq, S. Kashif ;
Wadel, Rebecca C. .
CURRENT OPINION IN STRUCTURAL BIOLOGY, 2018, 49 :1-10
[7]   ELIXIR-IT HPC@CINECA: high performance computing resources for the bioinformatics community [J].
Castrigano, Tiziana ;
Gioiosa, Silvia ;
Flati, Tiziano ;
Cestari, Mirko ;
Picardi, Ernesto ;
Chiara, Matteo ;
Fratelli, Maddalena ;
Amente, Stefano ;
Cirilli, Marco ;
Tangaro, Marco Antonio ;
Chillemi, Giovanni ;
Pesole, Graziano ;
Zambelli, Federico .
BMC BIOINFORMATICS, 2020, 21 (Suppl 10)
[8]   Molecular dynamics simulation of the RNA complex of a double-stranded RNA-binding domain reveals dynamic features of the intermolecular interface and its hydration [J].
Castrignanò, T ;
Chillemi, G ;
Varani, G ;
Desideri, A .
BIOPHYSICAL JOURNAL, 2002, 83 (06) :3542-3552
[9]   Structure and hydration of BamHI DNA recognition site:: A molecular dynamics investigation [J].
Castrignanò, T ;
Chillemi, G ;
Desideri, A .
BIOPHYSICAL JOURNAL, 2000, 79 (03) :1263-1272
[10]   The MEPS server for identifying protein conformational epitopes [J].
Castrignano, Tiziana ;
De Meo, Paolo D'Onorio ;
Carrabino, Danilo ;
Orsini, Massimilano ;
Floris, Matteo ;
Tramontano, Anna .
BMC BIOINFORMATICS, 2007, 8 (Suppl 1)