Construction of ZnO/Zn3In2S6/Pt with integrated S-scheme/Schottky heterojunctions for boosting photocatalytic hydrogen evolution and bisphenol a degradation

被引:23
作者
Yang, Lifang [1 ]
Si, Jiangju [1 ]
Liang, Liang [1 ]
Wang, Yunfei [1 ]
Zhu, Li [1 ]
Zhang, Zizhong [2 ]
机构
[1] Xinxiang Univ, Coll Chem & Mat Engn, Xinxiang 453003, Peoples R China
[2] Fuzhou Univ, Res Inst Photocatalysis, Coll Chem, State Key Lab Photocatalysis Energy & Environm, Fuzhou 350108, PR, Brazil
基金
中国国家自然科学基金;
关键词
S-scheme structure; Schottky junction; H; 2; generation; Bisphenol A degradation; ZnO; Pt; CO-DOPED ZNO; SEMICONDUCTOR; NORFLOXACIN; PERFORMANCE; COCATALYST; OXIDATION;
D O I
10.1016/j.jcis.2023.06.164
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Photocatalytic water splitting has been identified as a promising solution to tackle the current environmental and energy crisis in the world. However, the challenge of this green technology is the inefficient separation and utilization of photogenerated electron-hole pairs in photocatalysts. To overcome this challenge in one system, a ternary ZnO/Zn3In2S6/Pt material was prepared as a photocatalyst using a stepwise hydrothermal process and in situ photoreduction deposition. The integrated S-scheme/Schottky heterojunction in the constructed ZnO/ Zn3In2S6/Pt photocatalyst enabled it to exhibit efficient photoexcited charge separation/transfer. The evolved H2 reached up to 3.5 mmol g-1h-1. Meanwhile, the ternary composite possessed a high cyclic stability against photo corrosion under irradiation. Practically, the ZnO/Zn3In2S6/Pt photocatalyst also showed great potential for H2 evolution while simultaneously degrading organic contaminants like bisphenol A. It is hoped in this work that the incorporation of Schottky junctions and S-scheme heterostructures in the construction of photocatalysts would lead to accelerated electron transfer and high photoinduced electron-hole pair separation, respectively, to synergistically enhance the performance of photocatalysts.
引用
收藏
页码:855 / 866
页数:12
相关论文
共 50 条
  • [31] TiO2/FePS3 S-Scheme Heterojunction for Greatly Raised Photocatalytic Hydrogen Evolution
    Xia, Bingquan
    He, Bowen
    Zhang, Jianjun
    Li, Laiquan
    Zhang, Yanzhao
    Yu, Jiaguo
    Ran, Jingrun
    Qiao, Shi-Zhang
    ADVANCED ENERGY MATERIALS, 2022, 12 (46)
  • [32] Construction of SrTiO3/CaIn2S4 S-scheme heterojunction for enhanced photocatalytic degradation of organic pollutants
    Chen, Sunyao
    Chen, Changchun
    Cheng, Cheng
    Shu, Lingxiu
    Tang, Zhonghai
    Wang, Yifeng
    Pan, Lin
    Guan, Zisheng
    MATERIALS SCIENCE IN SEMICONDUCTOR PROCESSING, 2023, 164
  • [33] Boosted photocatalytic performance of hydrogen evolution and formaldehyde degradation with a S-scheme PMo12/MgIn2S4 heterojunction
    Rong, Ao
    Shi, Hongfei
    Zhao, Qi
    Zhu, Hongwei
    Wang, Haoshen
    Yan, Gang
    SEPARATION AND PURIFICATION TECHNOLOGY, 2024, 348
  • [34] Construction of CoP/Cu3P/Ni2P Double S-Scheme Heterojunctionsfor Improved Photocatalytic Hydrogen Evolution
    Wang, Kai
    Xie, Haiyan
    Li, Yanbing
    Wang, Guorong
    Jin, Zhiliang
    JOURNAL OF PHYSICAL CHEMISTRY C, 2022, 126 (16) : 6947 - 6959
  • [35] S-scheme heterojunction of MoO3 nanobelts and MoS2 nanoflowers for photocatalytic degradation
    Rezaei, Mohammad Mahdi
    Seyed Dorraji, Mir Saeed
    Hosseini, Seyyedeh Fatemeh
    Rasoulifard, Mohammad Hossein
    SCIENTIFIC REPORTS, 2025, 15 (01):
  • [36] Graphdiyne (CnH2n-2) as an "electron transfer bridge" boosting photocatalytic hydrogen evolution over Zn0.5Co0.5S/MoS2 S-scheme heterojunction
    Li, Mei
    Wang, Jing-Zhi
    Jin, Zhi-Liang
    RARE METALS, 2024, 43 (05) : 1999 - 2014
  • [37] P-Induced In Situ Construction of ZnCoMOF@CoP-5 S-Scheme Heterojunctions for Enhanced Photocatalytic H2 Evolution
    Quan, Yongkang
    Wang, Guorong
    Wang, Xuanpu
    Guo, Xin
    Hao, Xuqiang
    Wang, Kai
    Jin, Zhiliang
    LANGMUIR, 2022, 38 (41) : 12617 - 12629
  • [38] Robust S-scheme ZnO-TiO2-Ag with efficient charge separations for highly active hydrogen evolution performance and photocatalytic mechanism insight
    Ahmad, Irshad
    Shukrullah, Shazia
    Hussain, Humaira
    Naz, Muhammad Yasin
    Alsaif, Faisal Khalid
    Alsulamy, Sager
    Khan, Yasin
    APPLIED CATALYSIS A-GENERAL, 2023, 662
  • [39] Boosting of the piezoelectric photocatalytic performance of Bi2MoO6 by Fe3+doping and construction S-scheme heterojunction using WO3
    Li, Jiamin
    Chen, Changheng
    Bai, Jiangwen
    Jin, Yuehui
    Guo, Chongfeng
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2025, 683 : 574 - 584
  • [40] Synthesis of Ni2P/Zn3In2S6 hierarchical heterostructure for improving photocatalytic H2 evolution
    Chu, Li-Li
    CATALYSIS COMMUNICATIONS, 2019, 128