Modeling Carbon Nanotube Entanglement Load Transfer: Implications for Lightweight Aerospace Structures

被引:4
作者
Jensen, Benjamin D. [1 ]
Kim, Jae-Woo [2 ]
Sauti, Godfrey [1 ]
Wise, Kristopher E. [1 ]
Gardner, John M. [1 ]
Smith, Joseph G. [1 ]
Wincheski, Russell A. [1 ]
Cano, Roberto J. [1 ]
Siochi, Emilie J. [1 ]
机构
[1] NASA, Langley Res Ctr, Hampton, VA 23681 USA
[2] Natl Inst Aerosp, Hampton, VA 23666 USA
关键词
carbon nanotube; entanglement; load transfer; nanotube network; molecular dynamics; structuralmaterials; mechanics; ReaxFF; INDUCED CROSS-LINKING; MECHANICAL-PROPERTIES; NETWORKS; STRENGTH; FIBERS; BEHAVIOR; YARNS;
D O I
10.1021/acsanm.3c01255
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Carbon nanotube assemblies such as fibers and sheetsare an emerginglightweight material class with potential to enable aerospace structuresbeyond what is achievable with existing materials. Load transfer withinthese materials can be attributed to a combination of cohesion, staticfriction, covalent cross-links, and entanglements. Of these mechanisms,entanglements are the least studied or understood and are not welldefined when applied to nanotube materials. In this work, an entanglementis defined with sufficient detail for molecular models to be builtand tested. Non-reactive models where the covalent bond topology doesnot change and reactive models where covalent bonds can form and breakwere developed. In both model types, entanglement load transfer wasobserved and can be attributed to buckles (i.e., wrinkles) that formunder bending compression. In non-reactive models, there are energybarriers to restructure the shape of the buckles, while reactive modelsformed covalent bonds at the high-curvature edges of the buckles.Reactive models produced an average load transfer approximately 14times greater than non-reactive models due to these covalent bonds.
引用
收藏
页码:9558 / 9568
页数:11
相关论文
共 47 条
[21]   Mechanical Properties and Characterization of Epoxy Composites Containing Highly Entangled As-Received and Acid Treated Carbon Nanotubes [J].
Krieg, Aaron S. ;
King, Julia A. ;
Odegard, Gregory M. ;
Leftwich, Timothy R. ;
Odegard, Leif K. ;
Fraley, Paul D. ;
Miskioglu, Ibrahim ;
Jolowsky, Claire ;
Lundblad, Matthew ;
Park, Jin Gyu ;
Liang, Richard .
NANOMATERIALS, 2021, 11 (09)
[22]   Measurement of the elastic properties and intrinsic strength of monolayer graphene [J].
Lee, Changgu ;
Wei, Xiaoding ;
Kysar, Jeffrey W. ;
Hone, James .
SCIENCE, 2008, 321 (5887) :385-388
[23]   Persistence length of multiwalled carbon nanotubes with static bending [J].
Lee, Heon Sang ;
Yun, Chang Hun ;
Kim, Heon Mo ;
Lee, Cheol Jin .
JOURNAL OF PHYSICAL CHEMISTRY C, 2007, 111 (51) :18882-18887
[24]   Viscoelasticity of carbon nanotube buckypaper: zipping-unzipping mechanism and entanglement effects [J].
Li, Ying ;
Kroeger, Martin .
SOFT MATTER, 2012, 8 (30) :7822-7830
[25]   A theoretical evaluation of the effects of carbon nanotube entanglement and bundling on the structural and mechanical properties of buckypaper [J].
Li, Ying ;
Kroeger, Martin .
CARBON, 2012, 50 (05) :1793-1806
[26]   Analysis of the entanglements in carbon nanotube fibers using a self-folded nanotube model [J].
Lu, Weibang ;
Chou, Tsu-Wei .
JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS, 2011, 59 (03) :511-524
[27]  
McNaught A. D., 1997, Compendium of ChemicalTerminology, V1669
[28]   Tensile behavior of non-crosslinked networks of athermal fibers in the presence of entanglements and friction [J].
Negi, V ;
Picu, R. C. .
SOFT MATTER, 2021, 17 (45) :10186-10197
[29]   Interfacial sliding in carbon nanotube/diamond matrix composites [J].
Pavia, F. ;
Curtin, W. A. .
ACTA MATERIALIA, 2011, 59 (17) :6700-6709
[30]   Measurements of near-ultimate strength for multiwalled carbon nanotubes and irradiation-induced crosslinking improvements [J].
Peng, Bei ;
Locascio, Mark ;
Zapol, Peter ;
Li, Shuyou ;
Mielke, Steven L. ;
Schatz, George C. ;
Espinosa, Horacio D. .
NATURE NANOTECHNOLOGY, 2008, 3 (10) :626-631