Modeling Carbon Nanotube Entanglement Load Transfer: Implications for Lightweight Aerospace Structures

被引:4
作者
Jensen, Benjamin D. [1 ]
Kim, Jae-Woo [2 ]
Sauti, Godfrey [1 ]
Wise, Kristopher E. [1 ]
Gardner, John M. [1 ]
Smith, Joseph G. [1 ]
Wincheski, Russell A. [1 ]
Cano, Roberto J. [1 ]
Siochi, Emilie J. [1 ]
机构
[1] NASA, Langley Res Ctr, Hampton, VA 23681 USA
[2] Natl Inst Aerosp, Hampton, VA 23666 USA
关键词
carbon nanotube; entanglement; load transfer; nanotube network; molecular dynamics; structuralmaterials; mechanics; ReaxFF; INDUCED CROSS-LINKING; MECHANICAL-PROPERTIES; NETWORKS; STRENGTH; FIBERS; BEHAVIOR; YARNS;
D O I
10.1021/acsanm.3c01255
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Carbon nanotube assemblies such as fibers and sheetsare an emerginglightweight material class with potential to enable aerospace structuresbeyond what is achievable with existing materials. Load transfer withinthese materials can be attributed to a combination of cohesion, staticfriction, covalent cross-links, and entanglements. Of these mechanisms,entanglements are the least studied or understood and are not welldefined when applied to nanotube materials. In this work, an entanglementis defined with sufficient detail for molecular models to be builtand tested. Non-reactive models where the covalent bond topology doesnot change and reactive models where covalent bonds can form and breakwere developed. In both model types, entanglement load transfer wasobserved and can be attributed to buckles (i.e., wrinkles) that formunder bending compression. In non-reactive models, there are energybarriers to restructure the shape of the buckles, while reactive modelsformed covalent bonds at the high-curvature edges of the buckles.Reactive models produced an average load transfer approximately 14times greater than non-reactive models due to these covalent bonds.
引用
收藏
页码:9558 / 9568
页数:11
相关论文
共 47 条
[1]   Parallel reactive molecular dynamics: Numerical methods and algorithmic techniques [J].
Aktulga, H. M. ;
Fogarty, J. C. ;
Pandit, S. A. ;
Grama, A. Y. .
PARALLEL COMPUTING, 2012, 38 (4-5) :245-259
[2]  
[Anonymous], 2019, ADRI DUIN IS INVENTO
[3]   The role of carbon precursor on carbon nanotube chirality in floating catalyst chemical vapour deposition [J].
Barnard, J. S. ;
Paukner, C. ;
Koziol, K. K. .
NANOSCALE, 2016, 8 (39) :17262-17270
[4]   Carbon nanotube-filled polymer of electrical conductivity in composites.: Numerical simulation three-dimensional entangled fibrous networks [J].
Dalmas, Florent ;
Dendievel, Rémy ;
Chazeau, Laurent ;
Cavaillé, Jean-Yves ;
Gauthier, Catherine .
ACTA MATERIALIA, 2006, 54 (11) :2923-2931
[5]   ReaxFF Reactive Force Field Study of Polymerization of a Polymer Matrix in a Carbon Nanotube-Composite System [J].
Damirchi, Behzad ;
Radue, Matthew ;
Kanhaiya, Krishan ;
Heinz, Hendrik ;
Odegard, Gregory M. ;
van Duin, Adri C. T. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2020, 124 (37) :20488-20497
[6]   Strain-Induced Alignment Mechanisms of Carbon Nanotube Networks [J].
Downes, Rebekah ;
Wang, Shaokai ;
Haldane, David ;
Moench, Andrew ;
Liang, Richard .
ADVANCED ENGINEERING MATERIALS, 2015, 17 (03) :349-358
[7]   Kokkos: Enabling manycore performance portability through polymorphic memory access patterns [J].
Edwards, H. Carter ;
Trott, Christian R. ;
Sunderland, Daniel .
JOURNAL OF PARALLEL AND DISTRIBUTED COMPUTING, 2014, 74 (12) :3202-3216
[8]   Computational study of effect of radiation induced crosslinking on the properties of flattened carbon nanotubes [J].
Gaikwad, Prashik S. ;
Kowalik, Malgorzata ;
van Duin, Adri ;
Odegard, Gregory M. .
RSC ADVANCES, 2022, 12 (45) :28945-28953
[9]  
Gennes P.-G., 1979, SCALING CONCEPTS POL
[10]   Studies of the Reactivity of Graphene Driven by Mechanical Distortions [J].
Hawthorne, Nathaniel ;
Banerjee, Sayan ;
Moore, Quentarius ;
Rappe, Andrew M. ;
Batteas, James D. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2022, 126 (41) :17569-17578