A Blockchain-Based Scheme for Secure Data Offloading in Healthcare With Deep Reinforcement Learning

被引:71
作者
He, Qiang [1 ]
Feng, Zheng [1 ]
Fang, Hui [2 ,3 ]
Wang, Xingwei [4 ]
Zhao, Liang [5 ]
Yao, Yudong [6 ]
Yu, Keping [7 ]
机构
[1] Northeastern Univ, Coll Med & Biol Informat Engn, Shenyang 110169, Peoples R China
[2] Shanghai Univ Finance & Econ, Res Inst Interdisciplinary Sci, Shanghai 200433, Peoples R China
[3] Shanghai Univ Finance & Econ, Sch Informat Management & Engn, Shanghai 200433, Peoples R China
[4] Northeastern Univ, Coll Comp Sci & Engn, Shenyang 110169, Peoples R China
[5] Shenyang Aerosp Univ, Coll Comp Sci & Engn, Shenyang 110136, Peoples R China
[6] Stevens Inst Technol, Dept Elect & Comp Engn, Hoboken, NJ 07030 USA
[7] Hosei Univ, Grad Sch Sci & Engn, Tokyo 1848584, Japan
基金
上海市自然科学基金; 中国国家自然科学基金; 日本学术振兴会;
关键词
Mobile edge computing; computation offloading; blockchain; deep reinforcement learning; NETWORKS;
D O I
10.1109/TNET.2023.3274631
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
With the widespread popularity of the Internet of Things and various intelligent medical devices, the amount of medical data is rising sharply, and thus medical data processing has become increasingly challenging. Mobile edge computing technology allows computing power to be allocated at the edge closer to users, which enables efficient data offloading for healthcare systems. However, existing studies on medical data offloading seldom guarantee effective data privacy and security. Moreover, the research equipping data offloading architectures with Blockchain neglect the delay and energy consumption costs incurred in using Blockchain technology for medical data offloading. Therefore, in this paper, we propose a data offloading scheme for healthcare based on Blockchain technology, which achieves optimal medical resource allocation and simultaneously minimizes the cost of offloading tasks. Specifically, we design a smart contract to ensure secure data offloading. And, we formulate the cost problem as a Markov Decision Process, solved by a policy search-based deep reinforcement learning (Asynchronous Advantage Actor-Critic) scheme, where we jointly consider offloading decisions, allocation of computing resources and radio transmission bandwidth, and Blockchain data security audits. The security of our smart-contract-based mechanism is theoretically and empirically proved, while extensive experimental results also show that our solution can obtain superior performance gains with lower cost than other baselines.
引用
收藏
页码:65 / 80
页数:16
相关论文
共 50 条
  • [31] Mobility Management for Blockchain-Based Ultra-Dense Edge Computing: A Deep Reinforcement Learning Approach
    Zhang, Haibin
    Wang, Rong
    Sun, Wen
    Zhao, Huanlei
    IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2021, 20 (11) : 7346 - 7359
  • [32] Scalable Blockchain-empowered Distributed Computation Offloading: A Deep Reinforcement Learning Approach
    Xu, Feng
    Zhao, Zitong
    Liu, Lei
    Yuan, Xiaoming
    Pei, Qingqi
    IEEE INFOCOM 2024-IEEE CONFERENCE ON COMPUTER COMMUNICATIONS WORKSHOPS, INFOCOM WKSHPS 2024, 2024,
  • [33] Blockchain-based Dependable Task Offloading and Resource Allocation for IIoT via Multi-Agent Deep Reinforcement Learning
    Zhang, Peifeng
    Xu, Chi
    Xia, Changqing
    Jin, Xi
    2023 IEEE 98TH VEHICULAR TECHNOLOGY CONFERENCE, VTC2023-FALL, 2023,
  • [34] Blockchain-Based Edge Computing Resource Allocation in IoT: A Deep Reinforcement Learning Approach
    He, Ying
    Wang, Yuhang
    Qiu, Chao
    Lin, Qiuzhen
    Li, Jianqiang
    Ming, Zhong
    IEEE INTERNET OF THINGS JOURNAL, 2021, 8 (04) : 2226 - 2237
  • [35] SFedChain: blockchain-based federated learning scheme for secure data sharing in distributed energy storage networks
    Meng, Mingming
    Li, Yuancheng
    PEERJ, 2022, 8
  • [36] SFedChain: blockchain-based federated learning scheme for secure data sharing in distributed energy storage networks
    Meng, Mingming
    Li, Yuancheng
    PEERJ COMPUTER SCIENCE, 2022, 8
  • [37] A blockchain-based secure healthcare scheme with the assistance of unmanned aerial vehicle in Internet of Things
    Islam, Anik
    Shin, Soo Young
    COMPUTERS & ELECTRICAL ENGINEERING, 2020, 84 (84)
  • [38] Deep reinforcement learning based task offloading in blockchain enabled smart city
    Jin K.
    Wu W.
    Gao Y.
    Yin Y.
    Si P.
    High Technology Letters, 2023, 29 (03) : 295 - 304
  • [39] SBBS: A Secure Blockchain-Based Scheme for IoT Data Credibility in Fog Environment
    Fan, Yongkai
    Zhao, Guanqun
    Lei, Xia
    Liang, Wei
    Li, Kuan-Ching
    Choo, Kim-Kwang Raymond
    Zhu, Chunsheng
    IEEE INTERNET OF THINGS JOURNAL, 2021, 8 (11) : 9268 - 9277
  • [40] A blockchain-based scheme for privacy-preserving and secure sharing of medical data
    Huang, Haiping
    Zhu, Peng
    Xiao, Fu
    Sun, Xiang
    Huang, Qinglong
    COMPUTERS & SECURITY, 2020, 99