Antibacterial 3D-Printed Silver Nanoparticle/Poly Lactic-Co-Glycolic Acid (PLGA) Scaffolds for Bone Tissue Engineering

被引:18
|
作者
Chen, Fajun [1 ,2 ]
Han, Jian [2 ,3 ]
Guo, Zeyong [2 ,3 ]
Mu, Chongjing [4 ]
Yu, Chuandi [2 ,3 ]
Ji, Zhibo [5 ]
Sun, Lei [5 ,6 ,7 ]
Wang, Yujuan [2 ]
Wang, Junfeng [1 ,2 ]
机构
[1] Anhui Med Univ, Sch Basic Med, Dept Anat, 81 Meishan Rd, Hefei 230032, Peoples R China
[2] Chinese Acad Sci, Hefei Inst Phys Sci, High Magnet Field Lab, Hefei 230031, Peoples R China
[3] Grad Sch Univ Sci & Technol China, Hefei 230026, Peoples R China
[4] Nanjing Med Univ, Affiliated Suzhou Hosp, 16 Baita West Rd, Suzhou 215000, Peoples R China
[5] Anhui Med Univ, Dept Stomatol, Affiliated Hosp 2, Hefei 230601, Peoples R China
[6] Shanghai Jiao Tong Univ, Peoples Hosp 9, Shanghai Key Lab Stomatol, Coll Stomatol,Dept Oral Surg,Sch Med, Shanghai 200011, Peoples R China
[7] Shanghai Res Inst Stomatol, Natl Clin Res Ctr Stomatol, Shanghai 200011, Peoples R China
关键词
PLGA; AgNPs; bone tissue engineering; antibacterial scaffold; 3D printing; MECHANICAL-PROPERTIES; NANOFIBERS; INFECTION; BACTERIA; RELEASE; OXIDE;
D O I
10.3390/ma16113895
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Infectious bone defects present a major challenge in the clinical setting currently. In order to address this issue, it is imperative to explore the development of bone tissue engineering scaffolds that are equipped with both antibacterial and bone regenerative capabilities. In this study, we fabricated antibacterial scaffolds using a silver nanoparticle/poly lactic-co-glycolic acid (AgNP/PLGA) material via a direct ink writing (DIW) 3D printing technique. The scaffolds' microstructure, mechanical properties, and biological attributes were rigorously assessed to determine their fitness for repairing bone defects. The surface pores of the AgNPs/PLGA scaffolds were uniform, and the AgNPs were evenly distributed within the scaffolds, as confirmed via scanning electron microscopy (SEM). Tensile testing confirmed that the addition of AgNPs enhanced the mechanical strength of the scaffolds. The release curves of the silver ions confirmed that the AgNPs/PLGA scaffolds released them continuously after an initial burst. The growth of hydroxyapatite (HAP) was characterized via SEM and X-ray diffraction (XRD). The results showed that HAP was deposited on the scaffolds, and also confirmed that the scaffolds had mixed with the AgNPs. All scaffolds containing AgNPs exhibited antibacterial properties against Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli). A cytotoxicity assay using mouse embryo osteoblast precursor cells (MC3T3-E1) showed that the scaffolds had excellent biocompatibility and could be used for repairing bone tissue. The study shows that the AgNPs/PLGA scaffolds have exceptional mechanical properties and biocompatibility, effectively inhibiting the growth of S. aureus and E. coli. These results demonstrate the potential application of 3D-printed AgNPs/PLGA scaffolds in bone tissue engineering.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Poly(Dopamine) Coating on 3D-Printed Poly-Lactic-Co-Glycolic Acid/β-Tricalcium Phosphate Scaffolds for Bone Tissue Engineering
    Xu, Zhimin
    Wang, Ningning
    Liu, Peng
    Sun, Yidan
    Wang, Yumeng
    Fei, Fan
    Zhang, Shichen
    Zheng, Jianying
    Han, Bing
    MOLECULES, 2019, 24 (23):
  • [2] Characteristic Evaluation of Recombinant MiSp/Poly(lactic-co-glycolic) Acid (PLGA) Nanofiber Scaffolds as Potential Scaffolds for Bone Tissue Engineering
    Sun, Yuan
    Jia, Xiaona
    Meng, Qing
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2023, 24 (02)
  • [3] An Overview of Poly(lactic-co-glycolic) Acid (PLGA)-Based Biomaterials for Bone Tissue Engineering
    Gentile, Piergiorgio
    Chiono, Valeria
    Carmagnola, Irene
    Hatton, Paul V.
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2014, 15 (03): : 3640 - 3659
  • [4] Culturing Primary Human Osteoblasts on Electrospun Poly(lactic-co-glycolic acid) and Poly(lactic-co-glycolic acid)/Nanohydroxyapatite Scaffolds for Bone Tissue Engineering
    Li, Mengmeng
    Liu, Wenwen
    Sun, Jiashu
    Xianyu, Yunlei
    Wang, Jidong
    Zhang, Wei
    Zheng, Wenfu
    Huang, Deyong
    Di, Shiyu
    Long, Yun-Ze
    Jiang, Xingyu
    ACS APPLIED MATERIALS & INTERFACES, 2013, 5 (13) : 5921 - 5926
  • [5] Application of 3D-Printed, PLGA-Based Scaffolds in Bone Tissue Engineering
    Sun, Fengbo
    Sun, Xiaodan
    Wang, Hetong
    Li, Chunxu
    Zhao, Yu
    Tian, Jingjing
    Lin, Yuanhua
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2022, 23 (10)
  • [6] Review of the Potential use of Poly (lactic-co-glycolic acid) as Scaffolds in Bone Tissue Recovery
    Saptaji, Kushendarsyah
    Asriyanti, Asriyanti
    Khoiriyah, Nisa
    Muryanti, Laely
    Setiawan, Iwan
    MAKARA JOURNAL OF SCIENCE, 2024, 28 (01)
  • [7] 3D-printed biodegradable composite poly(lactic acid)-based scaffolds with a shape memory effect for bone tissue engineering
    bin Firoz, Abdullah
    Rybakov, Vladimir
    Fetisova, Anastasia A.
    Shlapakova, Lada E.
    Pariy, Igor O.
    Toropkov, Nikita
    Lozhkomoev, Alexander S.
    Mukhortova, Yulia R.
    Sharonova, Anna A.
    Wagner, Dmitry V.
    Surmeneva, Maria A.
    Kholkin, Andrei L.
    Surmenev, Roman A.
    ADVANCED COMPOSITES AND HYBRID MATERIALS, 2025, 8 (01)
  • [8] Degradation and Characterisation of Electrospun Polycaprolactone (PCL) and Poly(lactic-co-glycolic acid) (PLGA) Scaffolds for Vascular Tissue Engineering
    Bazgir, Morteza
    Zhang, Wei
    Zhang, Ximu
    Elies, Jacobo
    Saeinasab, Morvarid
    Coates, Phil
    Youseffi, Mansour
    Sefat, Farshid
    MATERIALS, 2021, 14 (17)
  • [9] Poly(lactic-co-glycolic acid)-bioactive glass composites as nanoporous scaffolds for bone tissue engineering: In vitro and in vivo studies
    Yang, Liuqing
    Liu, Shuying
    Fang, Wei
    Chen, Jun
    Chen, Yu
    EXPERIMENTAL AND THERAPEUTIC MEDICINE, 2019, 18 (06) : 4874 - 4880
  • [10] Electrospun poly (lactic-co-glycolic acid)/multiwalled carbon nanotubes composite scaffolds for guided bone tissue regeneration
    Zhang, Hualin
    JOURNAL OF BIOACTIVE AND COMPATIBLE POLYMERS, 2011, 26 (04) : 347 - 362