Privacy-Preserving Computation for Peer-to-Peer Energy Trading on a Public Blockchain

被引:10
|
作者
Mitrea, Dan [1 ]
Cioara, Tudor [1 ]
Anghel, Ionut [1 ]
机构
[1] Tech Univ Cluj Napoca, Comp Sci Dept, Memorandumului 28, Cluj Napoca 400114, Romania
基金
欧盟地平线“2020”;
关键词
secure multi-party computation; peer-to-peer energy trading; groups of prosumers; flexibility orders encoding; lower gas consumption; public blockchain; SCHEME; COMMUNICATION; MARKETS; NETWORK;
D O I
10.3390/s23104640
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
To ensure the success of energy transition and achieve the target of reducing the carbon footprint of energy systems, the management of energy systems needs to be decentralized. Public blockchains offer favorable features to support energy sector democratization and reinforce citizens' trust, such as tamper-proof energy data registration and sharing, decentralization, transparency, and support for peer-to-peer (P2P) energy trading. However, in blockchain-based P2P energy markets, transactional data are public and accessible, which raises privacy concerns related to prosumers' energy profiles while lacking scalability and featuring high transactional costs. In this paper, we employ secure multi-party computation (MPC) to assure privacy on a P2P energy flexibility market implementation in Ethereum by combining the prosumers' flexibility orders data and storing it safely on the chain. We provide an encoding mechanism for orders on the energy market to obfuscate the amount of energy traded by creating groups of prosumers, by splitting the amount of energy from bids and offers, and by creating group-level orders. The solution wraps around the smart contracts-based implementation of an energy flexibility marketplace, assuring privacy features on all market operations such as order submission, matching bids and offers, and commitment in trading and settlement. The experimental results show that the proposed solution is effective in supporting P2P energy flexibility trading, reducing the number of transactions, and gas consumption with a limited computational time overhead.
引用
收藏
页数:19
相关论文
共 50 条
  • [21] Emergence of blockchain-technology application in peer-to-peer electrical-energy trading: a review
    Thukral, Manish Kumar
    CLEAN ENERGY, 2021, 5 (01): : 104 - 123
  • [22] Machine Learning-Blockchain Based Autonomic Peer-to-Peer Energy Trading System
    Merrad, Yacine
    Habaebi, Mohamed Hadi
    Islam, Md Rafiqul
    Gunawan, Teddy Surya
    Elsheikh, Elfatih A. A.
    Suliman, F. M.
    Mesri, Mokhtaria
    APPLIED SCIENCES-BASEL, 2022, 12 (07):
  • [23] Peer-to-peer Energy Trading for Smart Energy Communities
    Denysiuk, Roman
    Lilliu, Fabio
    Recupero, Diego Reforgiato
    Vinyals, Meritxell
    ICAART: PROCEEDINGS OF THE 12TH INTERNATIONAL CONFERENCE ON AGENTS AND ARTIFICIAL INTELLIGENCE, VOL 1, 2020, : 40 - 49
  • [24] Peer-to-peer energy trading: A review of the literature
    Soto, Esteban A.
    Bosman, Lisa B.
    Wollega, Ebisa
    Leon-Salas, Walter D.
    APPLIED ENERGY, 2021, 283
  • [25] Grid Influenced Peer-to-Peer Energy Trading
    Tushar, Wayes
    Saha, Tapan Kumar
    Yuen, Chau
    Morstyn, Thomas
    Nahid-Al Masood
    Poor, H. Vincent
    Bean, Richard
    IEEE TRANSACTIONS ON SMART GRID, 2020, 11 (02) : 1407 - 1418
  • [26] Peer-to-Peer Energy Trading in a Community Microgrid
    Long, Chao
    Wu, Jianzhong
    Zhang, Chenghua
    Thomas, Lee
    Cheng, Meng
    Jenkins, Nick
    2017 IEEE POWER & ENERGY SOCIETY GENERAL MEETING, 2017,
  • [27] EnergyAuction: IoT-Blockchain Architecture for Local Peer-to-Peer Energy Trading in a Microgrid
    Condon, Felipe
    Franco, Patricia
    Martinez, Jose M.
    Eltamaly, Ali M.
    Kim, Young-Chon
    Ahmed, Mohamed A.
    SUSTAINABILITY, 2023, 15 (17)
  • [28] A novel communication efficient peer-to-peer energy trading scheme for enhanced privacy in microgrids
    Umer, Khalid
    Huang, Qi
    Khorasany, Mohsen
    Afzal, Muhammad
    Amin, Waqas
    APPLIED ENERGY, 2021, 296
  • [29] A hierarchical and decentralized energy management system for peer-to-peer energy trading
    Elkazaz, Mahmoud
    Sumner, Mark
    Thomas, David
    APPLIED ENERGY, 2021, 291
  • [30] Drivers and Challenges of Peer-to-Peer Energy Trading Development in Thailand
    Junlakarn, Siripha
    Kokchang, Phimsupha
    Audomvongseree, Kulyos
    ENERGIES, 2022, 15 (03)