Privacy-Preserving Computation for Peer-to-Peer Energy Trading on a Public Blockchain

被引:10
|
作者
Mitrea, Dan [1 ]
Cioara, Tudor [1 ]
Anghel, Ionut [1 ]
机构
[1] Tech Univ Cluj Napoca, Comp Sci Dept, Memorandumului 28, Cluj Napoca 400114, Romania
基金
欧盟地平线“2020”;
关键词
secure multi-party computation; peer-to-peer energy trading; groups of prosumers; flexibility orders encoding; lower gas consumption; public blockchain; SCHEME; COMMUNICATION; MARKETS; NETWORK;
D O I
10.3390/s23104640
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
To ensure the success of energy transition and achieve the target of reducing the carbon footprint of energy systems, the management of energy systems needs to be decentralized. Public blockchains offer favorable features to support energy sector democratization and reinforce citizens' trust, such as tamper-proof energy data registration and sharing, decentralization, transparency, and support for peer-to-peer (P2P) energy trading. However, in blockchain-based P2P energy markets, transactional data are public and accessible, which raises privacy concerns related to prosumers' energy profiles while lacking scalability and featuring high transactional costs. In this paper, we employ secure multi-party computation (MPC) to assure privacy on a P2P energy flexibility market implementation in Ethereum by combining the prosumers' flexibility orders data and storing it safely on the chain. We provide an encoding mechanism for orders on the energy market to obfuscate the amount of energy traded by creating groups of prosumers, by splitting the amount of energy from bids and offers, and by creating group-level orders. The solution wraps around the smart contracts-based implementation of an energy flexibility marketplace, assuring privacy features on all market operations such as order submission, matching bids and offers, and commitment in trading and settlement. The experimental results show that the proposed solution is effective in supporting P2P energy flexibility trading, reducing the number of transactions, and gas consumption with a limited computational time overhead.
引用
收藏
页数:19
相关论文
共 50 条
  • [1] Bidirectional Privacy-Preserving Network- Constrained Peer-to-Peer Energy Trading Based on Secure Multiparty Computation and Blockchain
    Zhou, Xin
    Wang, Bin
    Guo, Qinglai
    Sun, Hongbin
    Pan, Zhaoguang
    Tian, Nianfeng
    IEEE TRANSACTIONS ON POWER SYSTEMS, 2024, 39 (01) : 602 - 613
  • [2] Privacy-Preserving Peer-to-Peer Energy Trading in Blockchain-Enabled Smart Grids Using Functional Encryption
    Son, Ye-Byoul
    Im, Jong-Hyuk
    Kwon, Hee-Yong
    Jeon, Seong-Yun
    Lee, Mun-Kyu
    ENERGIES, 2020, 13 (06)
  • [3] Peer-to-peer energy trading using blockchain technology
    Sitharthan, R.
    Padmanaban, Sanjeevikumar
    Dhanabalan, Shanmuga Sundar
    Rajesh, M.
    ENERGY REPORTS, 2022, 8 : 2348 - 2350
  • [4] Peer-to-Peer Energy Trading with Privacy and Fair Exchange
    Hou, Dongkun
    Zhang, Jie
    Cui, Shujie
    Liu, Joseph K.
    2024 IEEE INTERNATIONAL CONFERENCE ON BLOCKCHAIN, BLOCKCHAIN 2024, 2024, : 174 - 182
  • [5] Blockchain-based Peer-to-Peer Energy Trading Method
    Thompson, Myles J.
    Sun, Hongjian
    Jiang, Jing
    CSEE JOURNAL OF POWER AND ENERGY SYSTEMS, 2022, 8 (05): : 1318 - 1326
  • [6] Peer-to-Peer energy trading in a microgrid based on iterative double auction and blockchain
    Zhang, Chen
    Yang, Tao
    Wang, Yong
    SUSTAINABLE ENERGY GRIDS & NETWORKS, 2021, 27
  • [7] Legal challenges facing blockchain-based peer-to-peer energy trading
    Karisma, Karisma
    Tehrani, Pardis Moslemzadeh
    2022 INTERNATIONAL CONFERENCE ON ADVANCED CREATIVE NETWORKS AND INTELLIGENT SYSTEMS, ICACNIS, 2022, : 61 - 67
  • [8] Blockchain and cooperative game theory for peer-to-peer energy trading in smart grids
    Moniruzzaman, Md
    Yassine, Abdulsalam
    Benlamri, Rachid
    INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS, 2023, 151
  • [9] BPET: A Unified Blockchain-Based Framework for Peer-to-Peer Energy Trading
    Fan, Caixiang
    Khazaei, Hamzeh
    Musilek, Petr
    FUTURE INTERNET, 2024, 16 (05)
  • [10] A Proof-of-Stake public blockchain based pricing scheme for peer-to-peer energy trading
    Yang, Jiawei
    Paudel, Amrit
    Gooi, Hoay Beng
    Hung Dinh Nguyen
    APPLIED ENERGY, 2021, 298