THE CAGINALP PHASE FIELD SYSTEMS WITH LOGARITHMIC NONLINEAR TERMS

被引:1
作者
Cherfils, Laurence [1 ]
Miranville, Alain [2 ,3 ,4 ]
机构
[1] La Rochelle Univ, CNRS, LaSIE, UMR 7356, Ave Michel Crepeau, La Rochelle 1, France
[2] Henan Normal Univ, Sch Math & Informat Sci Xinxiang, Xinxiang, Henan, Peoples R China
[3] Univ Poitiers, Lab I3M, 11 Blvd Marie & Pierre Curie-Batiment H3 TSA 61125, F-86073 Poitiers 9, France
[4] Lab Math & ApplicationsEquipe DACTIM MIS, 11 Blvd Marie & Pierre Curie-Batiment H3TSA 61125, F-86073 Poitiers 9, France
来源
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S | 2023年 / 16卷 / 09期
关键词
Caginalp phase field systems; logarithmic nonlinear term; well-posedness; strict separation property; EXPONENTIAL ATTRACTORS; ASYMPTOTIC-BEHAVIOR; CAHN-HILLIARD; MODEL; CONVERGENCE; EQUATIONS;
D O I
10.3934/dcdss.2023081
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Our aim in this paper is to study the existence and uniqueness of solutions to several phase field systems with logarithmic nonlinear terms. These systems were either proposed by Gunduz Cagninalp or are variants of these models, based on other laws than the usual Fourier law for heat conduction. In particular, an essential step is the separation of the order parameter from the pure phases.
引用
收藏
页码:2279 / 2304
页数:26
相关论文
共 37 条
[1]   Long-time convergence of solutions to a phase-field system [J].
Aizicovici, S ;
Feireisl, E ;
Issard-Roch, F .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2001, 24 (05) :277-287
[2]  
Alikakos N.D, 1979, Commun. Part. Differ. Equ., V4, P827, DOI [DOI 10.1080/03605307908820113, 10.1080/03605307908820113]
[3]  
[Anonymous], 1987, Mathematical problems in viscoelasticity
[4]  
[Anonymous], 2001, J. Evol. Equ, DOI DOI 10.1007/PL00001365
[5]   CONVERGENCE OF EXPONENTIAL ATTRACTORS FOR A TIME SPLITTING APPROXIMATION OF THE CAGINALP PHASE-FIELD SYSTEM [J].
Batangouna, Narcisse ;
Pierre, Morgan .
COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2018, 17 (01) :1-19
[6]  
Brochet D., 1993, Applicable Analysis, V49, P197, DOI 10.1080/00036819108840173
[7]  
Brochet D., 1993, Pitman Res. Notes Math. Ser, V296, P77
[8]  
Brochet D., 1996, Adv. Diff. Eqns, V1, P547
[9]  
Brokate M., 1996, HYSTERESIS PHASE TRA
[10]   Convergence of the phase field model to its sharp interface limits [J].
Caginalp, G ;
Chen, XF .
EUROPEAN JOURNAL OF APPLIED MATHEMATICS, 1998, 9 :417-445