Probabilistic error cancellation with sparse Pauli-Lindblad models on noisy quantum processors

被引:111
作者
van den Berg, Ewout [1 ]
Minev, Zlatko K. [1 ]
Kandala, Abhinav [1 ]
Temme, Kristan [1 ]
机构
[1] IBM TJ Watson Res Ctr, IBM Quantum, Yorktown Hts, NY 10562 USA
关键词
D O I
10.1038/s41567-023-02042-2
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Probabilistic error cancellation could improve the performance of quantum computers without the prohibitive overhead of fault-tolerant error correction. The method has now been demonstrated on a device with 20 qubits. Noise in quantum computers can result in biased estimates of physical observables. Accurate bias-free estimates can be obtained using probabilistic error cancellation, an error-mitigation technique that effectively inverts well-characterized noise channels. Learning correlated noise channels in large quantum circuits, however, has been a major challenge and has severely hampered experimental realizations. Our work presents a practical protocol for learning and inverting a sparse noise model that is able to capture correlated noise and scales to large quantum devices. These advances allow us to demonstrate probabilistic error cancellation on a superconducting quantum processor, thereby providing a way to measure noise-free observables at larger circuit volumes.
引用
收藏
页码:1116 / +
页数:7
相关论文
共 38 条
  • [1] Quantum supremacy using a programmable superconducting processor
    Arute, Frank
    Arya, Kunal
    Babbush, Ryan
    Bacon, Dave
    Bardin, Joseph C.
    Barends, Rami
    Biswas, Rupak
    Boixo, Sergio
    Brandao, Fernando G. S. L.
    Buell, David A.
    Burkett, Brian
    Chen, Yu
    Chen, Zijun
    Chiaro, Ben
    Collins, Roberto
    Courtney, William
    Dunsworth, Andrew
    Farhi, Edward
    Foxen, Brooks
    Fowler, Austin
    Gidney, Craig
    Giustina, Marissa
    Graff, Rob
    Guerin, Keith
    Habegger, Steve
    Harrigan, Matthew P.
    Hartmann, Michael J.
    Ho, Alan
    Hoffmann, Markus
    Huang, Trent
    Humble, Travis S.
    Isakov, Sergei V.
    Jeffrey, Evan
    Jiang, Zhang
    Kafri, Dvir
    Kechedzhi, Kostyantyn
    Kelly, Julian
    Klimov, Paul V.
    Knysh, Sergey
    Korotkov, Alexander
    Kostritsa, Fedor
    Landhuis, David
    Lindmark, Mike
    Lucero, Erik
    Lyakh, Dmitry
    Mandra, Salvatore
    McClean, Jarrod R.
    McEwen, Matthew
    Megrant, Anthony
    Mi, Xiao
    [J]. NATURE, 2019, 574 (7779) : 505 - +
  • [2] Purification of noisy entanglement and faithful teleportation via noisy channels
    Bennett, CH
    Brassard, G
    Popescu, S
    Schumacher, B
    Smolin, JA
    Wootters, WK
    [J]. PHYSICAL REVIEW LETTERS, 1996, 76 (05) : 722 - 725
  • [3] Breuer H. P., 2002, The Theory of Open Quantum Systems
  • [4] Hybrid Quantum-Classical Algorithms and Quantum Error Mitigation
    Endo, Suguru
    Cai, Zhenyu
    Benjamin, Simon C.
    Yuan, Xiao
    [J]. JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2021, 90 (03)
  • [5] Practical Quantum Error Mitigation for Near-Future Applications
    Endo, Suguru
    Benjamin, Simon C.
    Li, Ying
    [J]. PHYSICAL REVIEW X, 2018, 8 (03):
  • [6] Characterizing large-scale quantum computers via cycle benchmarking
    Erhard, Alexander
    Wallman, Joel J.
    Postler, Lukas
    Meth, Michael
    Stricker, Roman
    Martinez, Esteban A.
    Schindler, Philipp
    Monz, Thomas
    Emerson, Joseph
    Blatt, Rainer
    [J]. NATURE COMMUNICATIONS, 2019, 10 (1)
  • [7] Efficient Estimation of Pauli Channels
    Flammia, Steven T.
    Wallman, Joel J.
    [J]. ACM TRANSACTIONS ON QUANTUM COMPUTING, 2020, 1 (01):
  • [8] Efficient error models for fault-tolerant architectures and the Pauli twirling approximation
    Geller, Michael R.
    Zhou, Zhongyuan
    [J]. PHYSICAL REVIEW A, 2013, 88 (01):
  • [9] Quantum Error Mitigation via Matrix Product Operators
    Guo, Yuchen
    Yang, Shuo
    [J]. PRX QUANTUM, 2022, 3 (04):
  • [10] Efficient learning of quantum noise
    Harper, Robin
    Flammia, Steven T.
    Wallman, Joel J.
    [J]. NATURE PHYSICS, 2020, 16 (12) : 1184 - 1188