Multiplicity of semiclassical solutions for fractional Choquard equations with critical growth

被引:1
作者
Li, Quanqing [1 ]
Zhang, Jian [2 ,3 ,4 ]
Zhang, Wen [2 ,3 ,4 ]
机构
[1] Honghe Univ, Dept Math, Mengzi 661100, Yunnan, Peoples R China
[2] Hunan Univ Technol & Business, Coll Sci, Changsha 410205, Hunan, Peoples R China
[3] Hunan Univ Technol & Business, Key Lab Hunan Prov Stat Learning & Intelligent Com, Changsha 410205, Hunan, Peoples R China
[4] Univ Craiova, Dept Math, Craiova 200585, Romania
基金
中国国家自然科学基金;
关键词
Fractional Choquard equation; Semiclassical solution; Critical exponent growth; GROUND-STATE SOLUTIONS; SCHRODINGER-EQUATIONS; POSITIVE SOLUTIONS; CONCENTRATING SOLUTIONS; CONCENTRATION BEHAVIOR; R-N; EXISTENCE;
D O I
10.1007/s13324-023-00786-x
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article, we focus on the following fractional Choquard equation involving upper critical exponent epsilon(2s)(-Delta)(s)u + V(x)u = epsilon(mu-N) [|x|(-mu)*|u|(2)*(;)(mu,s)]|u|(2)*(-2)(mu,s)u + lambda f(u),x is an element of R-N,where epsilon is a positive parameter,lambda > 0, 0 < s < 1,(-Delta)(s) denotes the fractional Laplacian of order s, N > 2s, 0 < mu < N and 2*(mu,s) is fractional critical exponent in the sense of the Hardy-Littlewood-Sobolev inequality. Under suitable assumptions on the potential V and nonlinearity f, using variational tools from Nehari manifold method and Ljusternik-Schnirelmann category theory, we establish the existence and multiplicity of semiclassical positive solutions.
引用
收藏
页数:29
相关论文
共 54 条
[21]  
Frank R. L., 2009, ARXIV
[22]   A strongly indefinite Choquard equation with critical exponent due to the Hardy-Littlewood-Sobolev inequality [J].
Gao, Fashun ;
Yang, Minbo .
COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2018, 20 (04)
[23]   Nodal solutions for the Choquard equation [J].
Ghimenti, Marco ;
Van Schaftingen, Jean .
JOURNAL OF FUNCTIONAL ANALYSIS, 2016, 271 (01) :107-135
[24]   Small linear perturbations of fractional Choquard equations with critical exponent [J].
He, Xiaoming ;
Radulescu, Vicentiu D. .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2021, 282 :481-540
[25]   Existence and concentration result for the fractional Schrodinger equations with critical nonlinearities [J].
He, Xiaoming ;
Zou, Wenming .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2016, 55 (04)
[26]   Existence and concentration behavior of positive solutions for a Kirchhoff equation in R3 [J].
He, Xiaoming ;
Zou, Wenming .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2012, 252 (02) :1813-1834
[27]   Ground state solutions for fractional Choquard equations involving upper critical exponent [J].
Li, Quanqing ;
Teng, Kaiming ;
Zhang, Jian .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2020, 197
[28]   Existence of nontrivial solutions for fractional Choquard equations with critical or supercritical growth [J].
Li, Quanqing ;
Zhang, Jian ;
Wang, Wenbo ;
Teng, Kaimin .
APPLICABLE ANALYSIS, 2022, 101 (03) :849-857
[29]   Existence of nontrivial solutions for fractional Schrodinger equations with critical or supercritical growth [J].
Li, Quanqing ;
Teng, Kaimin ;
Wu, Xian ;
Wang, Wenbo .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2019, 42 (05) :1480-1487
[30]  
Lieb E.L., 2001, Analysis, Vsecond