Multiplicity of semiclassical solutions for fractional Choquard equations with critical growth

被引:1
作者
Li, Quanqing [1 ]
Zhang, Jian [2 ,3 ,4 ]
Zhang, Wen [2 ,3 ,4 ]
机构
[1] Honghe Univ, Dept Math, Mengzi 661100, Yunnan, Peoples R China
[2] Hunan Univ Technol & Business, Coll Sci, Changsha 410205, Hunan, Peoples R China
[3] Hunan Univ Technol & Business, Key Lab Hunan Prov Stat Learning & Intelligent Com, Changsha 410205, Hunan, Peoples R China
[4] Univ Craiova, Dept Math, Craiova 200585, Romania
基金
中国国家自然科学基金;
关键词
Fractional Choquard equation; Semiclassical solution; Critical exponent growth; GROUND-STATE SOLUTIONS; SCHRODINGER-EQUATIONS; POSITIVE SOLUTIONS; CONCENTRATING SOLUTIONS; CONCENTRATION BEHAVIOR; R-N; EXISTENCE;
D O I
10.1007/s13324-023-00786-x
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article, we focus on the following fractional Choquard equation involving upper critical exponent epsilon(2s)(-Delta)(s)u + V(x)u = epsilon(mu-N) [|x|(-mu)*|u|(2)*(;)(mu,s)]|u|(2)*(-2)(mu,s)u + lambda f(u),x is an element of R-N,where epsilon is a positive parameter,lambda > 0, 0 < s < 1,(-Delta)(s) denotes the fractional Laplacian of order s, N > 2s, 0 < mu < N and 2*(mu,s) is fractional critical exponent in the sense of the Hardy-Littlewood-Sobolev inequality. Under suitable assumptions on the potential V and nonlinearity f, using variational tools from Nehari manifold method and Ljusternik-Schnirelmann category theory, we establish the existence and multiplicity of semiclassical positive solutions.
引用
收藏
页数:29
相关论文
共 54 条
[1]   Singularly perturbed critical Choquard equations [J].
Alves, Claudianor O. ;
Gao, Fashun ;
Squassina, Marco ;
Yang, Minbo .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2017, 263 (07) :3943-3988
[2]  
Alves CO, 2016, CALC VAR PARTIAL DIF, V55, DOI 10.1007/s00526-016-0983-x
[3]   Investigating the multiplicity and concentration behaviour of solutions for a quasi-linear Choquard equation via the penalization method [J].
Alves, Claudianor O. ;
Yang, Minbo .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2016, 146 (01) :23-58
[4]   Existence of semiclassical ground state solutions for a generalized Choquard equation [J].
Alves, Claudianor O. ;
Yang, Minbo .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2014, 257 (11) :4133-4164
[5]  
Ambrosio V., 2021, FRONTIERS ELLIPTIC P, P662, DOI [10.1007/978-3-030-60220-8, DOI 10.1007/978-3-030-60220-8]
[6]   Concentration phenomena for a class of fractional Kirchhoff equations in RN with general nonlinearities [J].
Ambrosio, Vincenzo .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2020, 195
[7]   On the multiplicity and concentration of positive solutions for a p-fractional Choquard equation in RN [J].
Ambrosio, Vincenzo .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2019, 78 (08) :2593-2617
[8]   Multiplicity and Concentration Results for a Fractional Choquard Equation via Penalization Method [J].
Ambrosio, Vincenzo .
POTENTIAL ANALYSIS, 2019, 50 (01) :55-82
[9]   Multiplicity of positive solutions for a class of fractional Schrodinger equations via penalization method [J].
Ambrosio, Vincenzo .
ANNALI DI MATEMATICA PURA ED APPLICATA, 2017, 196 (06) :2043-2062
[10]  
[Anonymous], 1997, Minimax Theorems