Absolutely convergent Fourier-Jacobi series and generalized Lipschitz classes

被引:1
作者
Saadi, Faouaz [1 ]
Daher, Radouan [1 ]
机构
[1] Ain Chock Univ Hassan II, Dept Math, Lab Topol Algebra Geometry & Discrete Math, Fac Sci, Casablanca, Morocco
关键词
Fourier-Jacobi series; Fourier-Jacobi transform; generalized translation operator; Lipschitz class; Boas theorems;
D O I
10.1080/10652469.2022.2122460
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we give necessary and sufficient conditions in terms of Fourier-Jacobi coefficients of a function f, to ensure that f belongs either to one of the generalized Lipschitz classes H-alpha,beta(m) and h(alpha,beta)(m) for alpha >= , beta >= -1/2 and alpha not equal -1/2. Also a condition for generalized Jacobi differentiability of a function on interval [0, pi] is proved.
引用
收藏
页码:334 / 345
页数:12
相关论文
共 22 条
[1]  
Bary N. K., 1956, Tr. Mosk. Mat. Ob-va., V5, P483
[2]  
Boas RP., 1967, Integrability Theorems for Trigonometric Transforms, DOI 10.1007/978-3-642-87108-5
[3]  
Erdelyi A, 1953, Higher transcendental function, VI and II
[4]   CONVOLUTION STRUCTURE FOR JACOBI FUNCTION EXPANSIONS [J].
FLENSTEDJENSEN, M ;
KOORNWINDER, T .
ARKIV FOR MATEMATIK, 1973, 11 (02) :245-262
[5]  
Gradshteyn I. S., 2014, Table of Integrals, Series, and Products
[6]   Discrete Fourier-Jacobi Transform and Generalized Lipschitz Classes [J].
Loualid, El Mehdi ;
Elgargati, Abdelghani ;
Daher, Radouan .
ACTA MATHEMATICA VIETNAMICA, 2023, 48 (02) :259-269
[7]   Higher order Lipschitz classes of functions and absolutely convergent Fourier series [J].
Moricz, Ferenc .
ACTA MATHEMATICA HUNGARICA, 2008, 120 (04) :355-366
[8]   Absolutely convergent Fourier series and function classes.: II [J].
Moricz, Ferenc .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 342 (02) :1246-1249
[9]   Absolutely convergent Fourier series and function classes [J].
Moricz, Ferenc .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2006, 324 (02) :1168-1177
[10]   Absolutely convergent Fourier series, classical function classes and Paley's theorem [J].
Moricz, Ferenc .
ANALYSIS MATHEMATICA, 2008, 34 (04) :261-276