Non-uniform dependence of the data-to-solution map for the two-component Fornberg-Whitham system

被引:4
作者
Yu, Yanghai [1 ]
Li, Jinlu [2 ]
机构
[1] Anhui Normal Univ, Sch Math & Stat, Wuhu 241002, Peoples R China
[2] Gannan Normal Univ, Sch Math & Comp Sci, Ganzhou 341000, Peoples R China
基金
中国国家自然科学基金;
关键词
Fornberg-Whitham equation; Non-uniform dependence; Sobolev spaces; WELL-POSEDNESS; CAMASSA-HOLM; INITIAL DATA; CAUCHY-PROBLEM; ILL-POSEDNESS; EQUATION; EULER;
D O I
10.1007/s10231-022-01232-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider the Cauchy problem for the two-component Fornberg-Whitham system on the real line and study the issue of uniform dependence on initial data for this equation. We prove that the solution map of this problem cannot be uniformly continuous in Sobolev spaces H-s(R) x H-s(-1)(R) for s > 3/2.
引用
收藏
页码:59 / 76
页数:18
相关论文
共 33 条
[1]  
[Anonymous], 1998, Ann. Scuola Norm. Sup. Pisa Cl. Sci
[2]  
Bahouri H, 2011, GRUNDLEHR MATH WISS, V343, P1, DOI 10.1007/978-3-642-16830-7_1
[3]   AN INTEGRABLE SHALLOW-WATER EQUATION WITH PEAKED SOLITONS [J].
CAMASSA, R ;
HOLM, DD .
PHYSICAL REVIEW LETTERS, 1993, 71 (11) :1661-1664
[4]  
Constantin A, 1998, COMMUN PUR APPL MATH, V51, P475, DOI 10.1002/(SICI)1097-0312(199805)51:5<475::AID-CPA2>3.0.CO
[5]  
2-5
[6]   Wave breaking for nonlinear nonlocal shallow water equations [J].
Constantin, A ;
Escher, J .
ACTA MATHEMATICA, 1998, 181 (02) :229-243
[7]  
Constantin A., 1997, Expo. Math., V15, P53
[8]   Particle trajectories in solitary water waves [J].
Constantin, Adrian ;
Escher, Joachim .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 2007, 44 (03) :423-431
[9]   Analyticity of periodic traveling free surface water waves with vorticity [J].
Constantin, Adrian ;
Escher, Joachim .
ANNALS OF MATHEMATICS, 2011, 173 (01) :559-568
[10]   On an integrable two-component Camassa-Holm shallow water system [J].
Constantin, Adrian ;
Ivanov, Rossen I. .
PHYSICS LETTERS A, 2008, 372 (48) :7129-7132