Wavelet Characterization of Local Muckenhoupt Weighted Sobolev Spaces with Variable Exponents

被引:2
|
作者
Izuki, Mitsuo [1 ]
Nogayama, Toru [2 ]
Noi, Takahiro [2 ]
Sawano, Yoshihiro [3 ,4 ]
机构
[1] Tokyo City Univ, Fac Liberal Arts & Sci, Setagaya Ku, 1-28-1 Tamadutsumi, Tokyo 1588557, Japan
[2] Tokyo Metropolitan Univ, Dept Math Sci, Hachioji, Tokyo 1920397, Japan
[3] Chuo Univ, Dept Math Sci, Bunkyo Ku, Kasuga, Tokyo 1128551, Japan
[4] Peoples Friendship Univ Russia, Moscow, Russia
基金
日本学术振兴会;
关键词
Variable exponent; Wavelet; Sobolev spaces; Local Muckenhoupt weight; LEBESGUE SPACES; MODULAR INEQUALITIES; MAXIMAL OPERATOR; DECOMPOSITIONS; AMALGAMS; BESOV; LP;
D O I
10.1007/s00365-022-09573-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The goal of this paper is to define local weighted variable Sobolev spaces of fractional and negative order and their characterization by wavelets. We first consider local weighted variable Sobolev spaces by means of weak derivatives and obtain a wavelet characterization for these spaces. Using the Bessel potentials, we next define local weighted variable Sobolev spaces of fractional order. We show that Sobolev spaces obtained by weak derivatives and those by the Bessel potentials coincide. Finally, using duality, we define local weighted variable Sobolev spaces with negative order. We also show that local weighted variable Sobolev spaces are closed under complex interpolation. Some examples are given including the applications to weighted uniformly local Lebesgue spaces with variable exponents and periodic function spaces as a by-product, although the exponent is constant.
引用
收藏
页码:161 / 234
页数:74
相关论文
共 50 条
  • [41] LOCAL-TO-GLOBAL RESULTS IN VARIABLE EXPONENT SPACES
    Hasto, Peter A.
    MATHEMATICAL RESEARCH LETTERS, 2009, 16 (2-3) : 263 - 278
  • [42] Fractional integral operators on Hardy local Morrey spaces with variable exponents
    Ho, Kwok-Pun
    CARPATHIAN MATHEMATICAL PUBLICATIONS, 2024, 16 (01) : 190 - 202
  • [43] Hardy spaces with variable exponents on RD-spaces and applications
    Zhuo, Ciqiang
    Sawano, Yoshihiro
    Yang, Dachun
    DISSERTATIONES MATHEMATICAE, 2016, (520) : 1 - 74
  • [44] Calderon Operator on Local Morrey Spaces with Variable Exponents
    Ho, Kwok-Pun
    MATHEMATICS, 2021, 9 (22)
  • [45] Density of smooth functions in weighted Sobolev spaces with variable exponent
    Surnachev, M. D.
    DOKLADY MATHEMATICS, 2014, 89 (02) : 146 - 150
  • [46] A characterization of nonhomogeneous wavelet dual frames in Sobolev spaces
    Jian-Ping Zhang
    Yun-Zhang Li
    Journal of Inequalities and Applications, 2016
  • [47] Density of smooth functions in weighted Sobolev spaces with variable exponent
    M. D. Surnachev
    Doklady Mathematics, 2014, 89 : 146 - 150
  • [48] A characterization of nonhomogeneous wavelet dual frames in Sobolev spaces
    Zhang, Jian-Ping
    Li, Yun-Zhang
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2016,
  • [49] WEAK HERZ-TYPE HARDY SPACES WITH VARIABLE EXPONENTS AND APPLICATIONS
    Ben Seghier, Souad
    JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2023, 60 (01) : 33 - 69
  • [50] Generalized Frank characterizations of Muckenhoupt weights and homogeneous ball Banach Sobolev spaces
    Zhao, Yirui
    Li, Yinqin
    Yang, Dachun
    Yuan, Wen
    Zhang, Yangyang
    ADVANCES IN MATHEMATICS, 2024, 458