Wavelet Characterization of Local Muckenhoupt Weighted Sobolev Spaces with Variable Exponents

被引:2
|
作者
Izuki, Mitsuo [1 ]
Nogayama, Toru [2 ]
Noi, Takahiro [2 ]
Sawano, Yoshihiro [3 ,4 ]
机构
[1] Tokyo City Univ, Fac Liberal Arts & Sci, Setagaya Ku, 1-28-1 Tamadutsumi, Tokyo 1588557, Japan
[2] Tokyo Metropolitan Univ, Dept Math Sci, Hachioji, Tokyo 1920397, Japan
[3] Chuo Univ, Dept Math Sci, Bunkyo Ku, Kasuga, Tokyo 1128551, Japan
[4] Peoples Friendship Univ Russia, Moscow, Russia
基金
日本学术振兴会;
关键词
Variable exponent; Wavelet; Sobolev spaces; Local Muckenhoupt weight; LEBESGUE SPACES; MODULAR INEQUALITIES; MAXIMAL OPERATOR; DECOMPOSITIONS; AMALGAMS; BESOV; LP;
D O I
10.1007/s00365-022-09573-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The goal of this paper is to define local weighted variable Sobolev spaces of fractional and negative order and their characterization by wavelets. We first consider local weighted variable Sobolev spaces by means of weak derivatives and obtain a wavelet characterization for these spaces. Using the Bessel potentials, we next define local weighted variable Sobolev spaces of fractional order. We show that Sobolev spaces obtained by weak derivatives and those by the Bessel potentials coincide. Finally, using duality, we define local weighted variable Sobolev spaces with negative order. We also show that local weighted variable Sobolev spaces are closed under complex interpolation. Some examples are given including the applications to weighted uniformly local Lebesgue spaces with variable exponents and periodic function spaces as a by-product, although the exponent is constant.
引用
收藏
页码:161 / 234
页数:74
相关论文
共 50 条
  • [31] A CHARACTERIZATION OF ORTHONORMAL WAVELET FAMILIES IN SOBOLEV SPACES
    Lu Dayong
    Li Dengfeng
    ACTA MATHEMATICA SCIENTIA, 2011, 31 (04) : 1475 - 1488
  • [33] Fractional Sobolev spaces with variable exponents and fractional p(x)-Laplacians
    Kaufmann, Uriel
    Rossi, Julio D.
    Vidal, Raul
    ELECTRONIC JOURNAL OF QUALITATIVE THEORY OF DIFFERENTIAL EQUATIONS, 2017, (76) : 1 - 10
  • [34] Bourgain, Brezis and Mironescu theorem for fractional Sobolev spaces with variable exponents
    Minhyun Kim
    Annali di Matematica Pura ed Applicata (1923 -), 2023, 202 : 2653 - 2664
  • [35] Mixed Sobolev-like inequalities in Lebesgue spaces of variable exponents and in Orlicz spaces
    Diego Chamorro
    Positivity, 2022, 26
  • [36] Spline wavelet bases in function spaces with Muckenhoupt weights
    Ushakova, Elena P.
    REVISTA MATEMATICA COMPLUTENSE, 2020, 33 (01): : 125 - 160
  • [37] Sobolev embeddings for Riesz potential spaces of variable exponents near 1 and Sobolev's exponent
    Mizuta, Yoshihiro
    Ohno, Takao
    Shimomura, Tetsu
    BULLETIN DES SCIENCES MATHEMATIQUES, 2010, 134 (01): : 12 - 36
  • [38] A characterization of weighted Sobolev spaces via weighted Riesz bounded variation spaces
    Cruz-Uribe, David
    Guzman, Oscar
    Rafeiro, Humberto
    STUDIA MATHEMATICA, 2024, 274 (03) : 287 - 304
  • [39] Wavelet Characterizations of Variable Anisotropic Hardy Spaces
    He, Yao
    Jiao, Yong
    Liu, Jun
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2025, 41 (01) : 304 - 326
  • [40] Commutators of Bilinear Hardy Operators on Two Weighted Herz Spaces with Variable Exponents
    Wang, Shengrong
    Xu, Jingshi
    ANALYSIS IN THEORY AND APPLICATIONS, 2021, 37 (03): : 387 - 403