Optimal design of time-varying parameter fractional order controller using ameliorated gazelle optimization algorithm

被引:2
|
作者
Duan, Yujie [1 ]
Liang, Jianguo [1 ]
Liu, Jianglin [1 ]
Li, Yinhui [2 ]
Xie, Jiaquan [3 ]
Zhang, Tengda [1 ]
Feng, Zhongwei [1 ]
Zhao, Xiaodong [1 ]
机构
[1] Taiyuan Univ Technol, Coll Mech & Vehicle Engn, Taiyuan 030024, Peoples R China
[2] Taiyuan Univ Technol, Coll Elect Informat & Opt Engn, Taiyuan, Peoples R China
[3] Taiyuan Normal Univ, Sch Math & Stat, Taiyuan, Peoples R China
基金
中国国家自然科学基金;
关键词
ameliorated gazelle optimization algorithm; fractional order PID controller; robustness; stability domain; time-varying parameter; SYSTEMS;
D O I
10.1002/rnc.7304
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The model parameter uncertainty and controller gain disturbance of the factory servo system are challenges that affect the robustness and control performance of the system. In this paper, a class of factory servo systems with non-integer order is studied. The stable boundary trajectory method of the fractional order system is used to determine the parameter stability domain that makes the control system stable. An optimal gain trade-off design method for time-varying parameter fractional order PID controller (TPPI lambda D mu$$ \mathrm{TP}{PI}<^>{\lambda }{D}<^>{\mu } $$) is proposed. The time function is introduced as the adjustment formula to realize the adaptive adjustment of the controller gain. The Lyapunov theorem analyzes the stability of the method. At the same time, an ameliorated gazelle optimization algorithm (AGOA) is proposed to optimize the parameters of the TPPI lambda D mu$$ \mathrm{TP}{PI}<^>{\lambda }{D}<^>{\mu } $$ controller, and the weight relationship is changed to set the objective function to obtain the optimal performance combination after optimization. The benchmark function optimization test is completed. Statistical analysis shows that AGOA can enhance the global search ability, prevent the acquisition of local optimum, and have faster convergence speed. The final simulation results show that the proposed scheme is a promising alternative to improve the system control performance.
引用
收藏
页码:5996 / 6020
页数:25
相关论文
共 50 条
  • [1] The design of a fractional-order sliding mode controller with a time-varying sliding surface
    Eray, Osman
    Tokat, Sezai
    TRANSACTIONS OF THE INSTITUTE OF MEASUREMENT AND CONTROL, 2020, 42 (16) : 3196 - 3215
  • [2] Synchronization of different fractional order chaotic systems with time-varying parameter and orders
    Behinfaraz, Reza
    Badamchizadeh, Mohammad Ali
    ISA TRANSACTIONS, 2018, 80 : 399 - 410
  • [3] Optimal Tuning of Fractional Order PID Controller for AVR System Using Simulated Annealing Optimization Algorithm
    Lahcene, Rouani
    Abdeldjalil, Sebbane
    Aissa, Kheldoun
    2017 5TH INTERNATIONAL CONFERENCE ON ELECTRICAL ENGINEERING - BOUMERDES (ICEE-B), 2017,
  • [4] Design of PID Controller Based on Echo State Network With Time-Varying Reservoir Parameter
    Wang, Zhanshan
    Yao, Xianshuang
    Li, Tieshan
    Zhang, Huaguang
    IEEE TRANSACTIONS ON CYBERNETICS, 2022, 52 (07) : 6615 - 6626
  • [5] Optimal design of Fractional order PID controller based Automatic voltage regulator system using gradient-based optimization algorithm
    Altbawi S.M.A.
    Mokhtar A.S.B.
    Jumani T.A.
    Khan I.
    Hamadneh N.N.
    Khan A.
    Journal of King Saud University - Engineering Sciences, 2024, 36 (01) : 32 - 44
  • [6] Optimization design on fractional order PID controller based on adaptive particle swarm optimization algorithm
    Liu, Xiaoyong
    NONLINEAR DYNAMICS, 2016, 84 (01) : 379 - 386
  • [7] Optimization design on fractional order PID controller based on adaptive particle swarm optimization algorithm
    Xiaoyong Liu
    Nonlinear Dynamics, 2016, 84 : 379 - 386
  • [8] An optimal robust design method for fractional-order reset controller
    Wang, Shaohua
    Sun, Yixiu
    Li, Xiaoqing
    Han, Bin
    Luo, Ying
    ASIAN JOURNAL OF CONTROL, 2023, 25 (02) : 1086 - 1101
  • [9] Optimal fractional-order controller design using direct synthesis method
    Yumuk, Erhan
    Guzelkaya, Mujde
    Eksin, Ibrahim
    IET CONTROL THEORY AND APPLICATIONS, 2020, 14 (18): : 2960 - 2967
  • [10] SATISFACTORY OPTIMIZATION DESIGN FOR FRACTIONAL ORDER PID CONTROLLER
    Liu, Tianyu
    Jial, Yuanjun
    Jin, Weidong
    Wang, Yong
    PROCEEDINGS OF THE ASME INTERNATIONAL DESIGN ENGINEERING TECHNICAL CONFERENCES AND COMPUTERS AND INFORMATION IN ENGINEERING CONFERENCE, 2019, VOL 9, 2019,