DEVELOPMENT OF GLASS-SUBSTRATE-BASED MEMS MICRO-HOTPLATE WITH LOW-POWER CONSUMPTION AND TGV STRUCTURE THROUGH ANODIC BONDING AND GLASS THERMAL REFLOW

被引:1
作者
Qian, Honglin [1 ]
Dai, Haotian [1 ]
Chen, Fanhong [2 ]
Liu, Shuai [2 ]
Du, Xiaohui [2 ]
Li, Bing [1 ]
Zhu, Minjie [2 ]
Xue, Gaopeng [1 ]
机构
[1] Harbin Inst Technol, Shenzhen 518055, Peoples R China
[2] Instrumentat Technol & Econ Inst, Beijing 100055, Peoples R China
来源
2024 IEEE 37TH INTERNATIONAL CONFERENCE ON MICRO ELECTRO MECHANICAL SYSTEMS, MEMS | 2024年
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
Anodic bonding; glass thermal reflow; glass-based micro-hotplate; low power consumption; TGV; SENSOR; MICROHEATER; FABRICATION;
D O I
10.1109/MEMS58180.2024.10439494
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This study innovatively proposed a microfabrication method of anodic bonding and glass thermal reflow for fabricating glass-based MEMS micro-hotplates with (through glass via) TGV structure. Compared with the conventionally adopted Si-based micro-hotplate, the glass-based micro-hotplate with smaller thermal conductivity coefficient ( 1.4 W/(m*K)) leads to a lower power consumption. The glass-based micro-hotplate with insulation characteristic can directly support the micro-heater electrodes, and the conductive Si columns in TGV can replace the wire-bonder to realize the electrical interconnection with Integrated Circuit (IC). Finally, the fabricated glass-based micro-hotplates (0.196 mm(2)) can achieve a low power consumption of 80.4 mW at the target temperature of 305 degrees C.
引用
收藏
页码:891 / 894
页数:4
相关论文
共 16 条
[1]   A Monolithic CMOS Microhotplate-Based Gas Sensor System [J].
Afridi, Muhammad Y. ;
Suehle, John S. ;
Zaghloul, Mona E. ;
Berning, David W. ;
Hefner, Allen R. ;
Cavicchi, Richard E. ;
Semancik, Steve ;
Montgomery, Christopher B. ;
Taylor, Charles J. .
IEEE SENSORS JOURNAL, 2002, 2 (06) :644-655
[2]   Design and Simulation of a High Temperature MEMS Micro-hotplate for Application in Trace Gas Detection [J].
Ahmed, Abdelaziz Yousif ;
Dennis, John Ojur ;
Saad, Mohamad Naufal Mohamad ;
Talah, Waddah Abdelbagi .
ICSE: 2008 IEEE INTERNATIONAL CONFERENCE ON SEMICONDUCTOR ELECTRONICS, PROCEEDINGS, 2008, :153-157
[3]   Technological Journey Towards Reliable Microheater Development for MEMS Gas Sensors: A Review [J].
Bhattacharyya, P. .
IEEE TRANSACTIONS ON DEVICE AND MATERIALS RELIABILITY, 2014, 14 (02) :589-599
[4]  
Chen Y., 2020, IEEE 33 INT C MICROE
[5]   Review on Optical Fiber Sensors for Hazardous-Gas Monitoring in Mines and Tunnels [J].
He, Tongyue ;
Wang, Wei ;
He, Ben-Guo ;
Chen, Junxin .
IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2023, 72
[6]   Analytical Model of Semiconductor Sensor Layers in SAW Gas Sensors [J].
Hejczyk, T. ;
Urbanczyk, M. ;
Jakubik, W. P. .
ACTA PHYSICA POLONICA A, 2010, 118 (06) :1148-1152
[7]  
Hu Qian, 2007, Instrument Techniques and Sensor, P77
[8]   SOICMOS compatible low-power microheater optimization for the fabrication of smart gas sensors [J].
Laconte, J ;
Dupont, U ;
Flandre, D ;
Raskin, JP .
IEEE SENSORS JOURNAL, 2004, 4 (05) :670-680
[9]   Low Temperature Fabrication of a Highly Sensitive Methane Sensor with Embedded Co-Planar Nickel Alloy Microheater on MEMS Platform [J].
Roy, S. ;
Sarkar, C. K. ;
Bhattacharyya, P. .
SENSOR LETTERS, 2012, 10 (3-4) :760-769
[10]  
Solzbacher Florian., 2011, Sensor and Actuators B, V77, P111