Benzoic acid as additive: A route to inhibit the formation of cracks in catalyst layer of proton exchange membrane fuel cells

被引:0
|
作者
Liu, Pengcheng [1 ]
Yang, Daijun [1 ]
Li, Bing [1 ]
Kang, Jialun [1 ]
Zhang, Cunman [1 ]
Ming, Pingwen [1 ]
Pan, Xiangmin [2 ]
Liu, Hengzhi [3 ]
机构
[1] Tongji Univ, Clean Energy Automot Engn Ctr, Sch Automot Studies, Shanghai 201804, Peoples R China
[2] Shanghai Motor Vehicle Inspect Certificat & Techno, Shanghai 201805, Peoples R China
[3] Xiangtan Univ, Key Lab Green Organ Synth & Applicat Hunan Prov, Minist Educ,Coll Chem, Key Lab Environmentally Friendly Chem & Applicat, Xiangtan 411105, Hunan, Peoples R China
基金
中国国家自然科学基金;
关键词
Crack; Catalyst layer; Benzoic acid; Catalyst ink; Molecular dynamic simulation; Proton exchange membrane fuel cells; MOLECULAR-DYNAMICS; IONOMER ADSORPTION; CARBON-BLACK; ELECTRODE; PERFORMANCE; SOLVENT; POLYMER; DEGRADATION; SIMULATION; MORPHOLOGY;
D O I
10.1016/j.jpowsour.2023.233817
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Cracks are a common defect in the catalyst layers (CLs) of proton exchange membrane fuel cells (PEMFCs), deteriorating their performance. This study proposes benzoic acid as a cracking inhibitor in the catalyst ink. The additive strengthens the network of catalyst particles by promoting attractive interaction within them. Molecular dynamics simulations demonstrate that the inhibitor facilitates the desorption of ionomer from the Pt/carbon surface, weakening the repulsion force within catalyst particles. Rheology experiments indicate that the addition of benzoic acid transforms the catalyst ink from a sol-like to a gel-like, improving its viscosity and storage modulus. The stronger attractive interactions within the inhibitor-added ink impart anti-cracking ability, preventing stress release during the drying process. Furthermore, optical microscopy reveals a significant decrease in both the crack area and the maximum length of cracks in the CL after incorporating the inhibitor. Specifically, the crack area decreases from 13% to 2%, while the maximum crack length decreases from nearly 400 mu m to 150 mu m. Single cell tests show that the inhibitor-added sample exhibits a higher peak power density of 0.893 W/cm2 compared to the standard sample's 0.873 W/cm2. Overall, this study presents an effective method for manufacturing high-quality CLs in PEMFCs, ensuring improved performance.
引用
收藏
页数:13
相关论文
共 50 条
  • [41] In situ grown nanoscale platinum on carbon powder as catalyst layer in proton exchange membrane fuel cells(PEMFCs)
    Sheng Sui
    Xiaolong Zhuo
    Kaihua Su
    Xianyong Yao
    Junliang Zhang
    Shangfeng Du
    Kevin Kendall
    Journal of Energy Chemistry, 2013, (03) : 477 - 483
  • [42] Proton Exchange Membrane Fuel Cell Catalyst Layer Degradation Mechanisms: A Succinct Review
    Okonkwo, Paul C.
    CATALYSTS, 2025, 15 (01)
  • [43] Structure, Property, and Performance of Catalyst Layers in Proton Exchange Membrane Fuel Cells
    Jian Zhao
    Huiyuan Liu
    Xianguo Li
    Electrochemical Energy Reviews, 2023, 6
  • [44] Structure, Property, and Performance of Catalyst Layers in Proton Exchange Membrane Fuel Cells
    Zhao, Jian
    Liu, Huiyuan
    Li, Xianguo
    ELECTROCHEMICAL ENERGY REVIEWS, 2023, 6 (01)
  • [45] Solvent effect on the Nafion agglomerate morphology in the catalyst layer of the proton exchange membrane fuel cells
    Kim, Tae-Hyun
    Yi, Jae-You
    Jung, Chi-Young
    Jeong, Euigyung
    Yi, Sung-Chul
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2017, 42 (01) : 478 - 485
  • [46] Decoupling solvents evaporation behavior to reveal the drying mechanism and its effect on microstructure formation of catalyst layer in proton exchange membrane fuel cells
    Kang, Jialun
    Zheng, Weibo
    Chen, Siqi
    Yang, Daozeng
    Li, Bing
    Zhang, Cunman
    Ming, Pingwen
    JOURNAL OF POWER SOURCES, 2024, 623
  • [47] Catalyst layer design with inhomogeneous distribution of platinum and ionomer optimal for proton exchange membrane fuel cell cold-start
    Yang, Liu
    Fu, Kaihao
    Jin, Xisheng
    Wang, Shiyao
    Gan, Quanquan
    Zhang, Qi
    Li, Ping
    Cao, Chenxi
    CHEMICAL ENGINEERING SCIENCE, 2022, 263
  • [48] Cathode catalyst layer design with gradients of ionomer distribution for proton exchange membrane fuel cells
    Shahgaldi, Samaneh
    Ozden, Adnan
    Li, Xianguo
    Hamdullahpur, Feridun
    ENERGY CONVERSION AND MANAGEMENT, 2018, 171 : 1476 - 1486
  • [49] Detailed Catalyst Layer Structure of Proton Exchange Membrane Fuel Cells from Contrast Variation Small-Angle Neutron Scattering
    Chabot, Florian
    Lee, Jongmin
    Vandenberghe, Florent
    Guetaz, Laure
    Gebel, Gerard
    Lyonnard, Sandrine
    Porcar, Lionel
    Rosini, Sebastien
    Morin, Arnaud
    ACS APPLIED ENERGY MATERIALS, 2023, 6 (03) : 1185 - 1196
  • [50] Investigation of porous structure formation of catalyst layers for proton exchange membrane fuel cells and their effect on cell performance
    Suzuki, Takahiro
    Tanaka, Hiroki
    Hayase, Masanori
    Tsushima, Shohji
    Hirai, Shuichiro
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2016, 41 (44) : 20326 - 20335