Fast Context Adaptation for Video Object Segmentation

被引:0
作者
Dubuisson, Isidore [1 ]
Muselet, Damien [1 ]
Ducottet, Christophe [1 ]
Lang, Jochen [2 ]
机构
[1] Univ Jean Monnet St Etienne, CNRS, Inst Opt Grad Sch, Lab Hubert Curien UMR 5516, F-42023 St Etienne, France
[2] Univ Ottawa, Sch Elect Engn & Comp Sci, Ottawa, ON, Canada
来源
COMPUTER ANALYSIS OF IMAGES AND PATTERNS, CAIP 2023, PT I | 2023年 / 14184卷
关键词
Video Segmentation; Feature matching; First frame adaptation; Context-Aware;
D O I
10.1007/978-3-031-44237-7_26
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper we present an adaptation module for feature matching based Semi-automatic Video Object Segmentation methods (SVOS). Most current solutions to adapt SVOS methods during inference are slow or inefficient. Feature matching based methods use affinity between a set of reference and query features to segment a target in the current frame based on a reference. We propose an adaptation module working solely with the user supplied mask in the first frame of a video. Our adaptation of the matching module provides more reliable information to the model for segmentation in all the video frames and does not significantly increase inference time. The evaluation on both OVIS and DAVIS 17 datasets shows a significant improvement on the segmentation (respectively +2.9% and +1% of the Jaccard index). This demonstrates that our adaptation of the feature space provides a better matching between query and reference features.
引用
收藏
页码:273 / 283
页数:11
相关论文
共 22 条
[1]  
Bhat G., 2020, P CVF EUROPEAN C COM
[2]   One-Shot Video Object Segmentation [J].
Caelles, S. ;
Maninis, K. -K. ;
Pont-Tuset, J. ;
Leal-Taixe, L. ;
Cremers, D. ;
Van Gool, L. .
30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, :5320-5329
[3]  
Chen X., P IEEECVF C COMPUTER
[4]   XMem: Long-Term Video Object Segmentation with an Atkinson-Shiffrin Memory Model [J].
Cheng, Ho Kei ;
Schwing, Alexander G. .
COMPUTER VISION - ECCV 2022, PT XXVIII, 2022, 13688 :640-658
[5]   Deep learning for video object segmentation: a review [J].
Gao, Mingqi ;
Zheng, Feng ;
Yu, James J. Q. ;
Shan, Caifeng ;
Ding, Guiguang ;
Han, Jungong .
ARTIFICIAL INTELLIGENCE REVIEW, 2023, 56 (01) :457-531
[6]   VideoMatch: Matching Based Video Object Segmentation [J].
Hu, Yuan-Ting ;
Huang, Jia-Bin ;
Schwing, Alexander G. .
COMPUTER VISION - ECCV 2018, PT VIII, 2018, 11212 :56-73
[7]   Lucid Data Dreaming for Video Object Segmentation [J].
Khoreva, Anna ;
Benenson, Rodrigo ;
Ilg, Eddy ;
Brox, Thomas ;
Schiele, Bernt .
INTERNATIONAL JOURNAL OF COMPUTER VISION, 2019, 127 (09) :1175-1197
[8]   Target-Aware Deep Tracking [J].
Li, Xin ;
Ma, Chao ;
Wu, Baoyuan ;
He, Zhenyu ;
Yang, Ming-Hsuan .
2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, :1369-1378
[9]   Microsoft COCO: Common Objects in Context [J].
Lin, Tsung-Yi ;
Maire, Michael ;
Belongie, Serge ;
Hays, James ;
Perona, Pietro ;
Ramanan, Deva ;
Dollar, Piotr ;
Zitnick, C. Lawrence .
COMPUTER VISION - ECCV 2014, PT V, 2014, 8693 :740-755
[10]   Video Object Segmentation without Temporal Information [J].
Maninis, Kevis-Kokitsi ;
Caelles, Sergi ;
Chen, Yuhua ;
Pont-Tuset, Jordi ;
Leal-Taixe, Laura ;
Cremers, Daniel ;
Van Gool, Luc .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2019, 41 (06) :1515-1530