Conditional transcriptome-wide association study for fine-mapping candidate causal genes

被引:11
作者
Liu, Lu [1 ,2 ]
Yan, Ran [1 ,2 ]
Guo, Ping [1 ,2 ]
Ji, Jiadong [3 ]
Gong, Weiming [1 ,2 ]
Xue, Fuzhong [1 ,2 ]
Yuan, Zhongshang [1 ,2 ]
Zhou, Xiang [4 ,5 ]
机构
[1] Shandong Univ, Sch Publ Hlth, Dept Biostat, Cheeloo Coll Med, Jinan, Peoples R China
[2] Shandong Univ, Inst Med Dataol, Cheeloo Coll Med, Jinan, Peoples R China
[3] Shandong Univ, Inst Financial Studies, Jinan, Peoples R China
[4] Univ Michigan, Dept Biostat, Ann Arbor, MI 48109 USA
[5] Univ Michigan, Ctr Stat Genet, Ann Arbor, MI 48109 USA
基金
中国国家自然科学基金;
关键词
TRAITS; METAANALYSIS; MUTATIONS; IMPROVES; POWER;
D O I
10.1038/s41588-023-01645-y
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Transcriptome-wide association studies (TWASs) aim to integrate genome-wide association studies with expression-mapping studies to identify genes with genetically predicted expression (GReX) associated with a complex trait. In the present report, we develop a method, GIFT (gene-based integrative fine-mapping through conditional TWAS), that performs conditional TWAS analysis by explicitly controlling for GReX of all other genes residing in a local region to fine-map putatively causal genes. GIFT is frequentist in nature, explicitly models both expression correlation and cis-single nucleotide polymorphism linkage disequilibrium across multiple genes and uses a likelihood framework to account for expression prediction uncertainty. As a result, GIFT produces calibrated P values and is effective for fine-mapping. We apply GIFT to analyze six traits in the UK Biobank, where GIFT narrows down the set size of putatively causal genes by 32.16-91.32% compared with existing TWAS fine-mapping approaches. The genes identified by GIFT highlight the importance of vessel regulation in determining blood pressures and lipid metabolism for regulating lipid levels.
引用
收藏
页码:348 / +
页数:19
相关论文
共 44 条
  • [1] Integrating predicted transcriptome from multiple tissues improves association detection
    Barbeira, Alvaro N.
    Pividori, Milton D.
    Zheng, Jiamao
    Wheeler, Heather E.
    Nicolae, Dan L.
    Im, Hae Kyung
    [J]. PLOS GENETICS, 2019, 15 (01):
  • [2] Approximately independent linkage disequilibrium blocks in human populations
    Berisa, Tomaz
    Pickrell, Joseph K.
    [J]. BIOINFORMATICS, 2016, 32 (02) : 283 - 285
  • [3] MOSTWAS: Multi-Omic Strategies for Transcriptome-Wide Association Studies
    Bhattacharya, Arjun
    Li, Yun
    Love, Michael, I
    [J]. PLOS GENETICS, 2021, 17 (03):
  • [4] Intestinal ABCA1 directly contributes to HDL biogenesis in vivo
    Brunham, LR
    Kruit, JK
    Iqbal, J
    Fievet, C
    Timmins, JM
    Pape, TD
    Coburn, BA
    Bissada, N
    Staels, B
    Groen, AK
    Hussain, MM
    Parks, JS
    Kuipers, F
    Hayden, MR
    [J]. JOURNAL OF CLINICAL INVESTIGATION, 2006, 116 (04) : 1052 - 1062
  • [5] The NHGRI-EBI GWAS Catalog of published genome-wide association studies, targeted arrays and summary statistics 2019
    Buniello, Annalisa
    MacArthur, Jacqueline A. L.
    Cerezo, Maria
    Harris, Laura W.
    Hayhurst, James
    Malangone, Cinzia
    McMahon, Aoife
    Morales, Joannella
    Mountjoy, Edward
    Sollis, Elliot
    Suveges, Daniel
    Vrousgou, Olga
    Whetzel, Patricia L.
    Amode, Ridwan
    Guillen, Jose A.
    Riat, Harpreet S.
    Trevanion, Stephen J.
    Hall, Peggy
    Junkins, Heather
    Flicek, Paul
    Burdett, Tony
    Hindorff, Lucia A.
    Cunningham, Fiona
    Parkinson, Helen
    [J]. NUCLEIC ACIDS RESEARCH, 2019, 47 (D1) : D1005 - D1012
  • [6] kTWAS: integrating kernel machine with transcriptome-wide association studies improves statistical power and reveals novel genes
    Cao, Chen
    Kwok, Devin
    Edie, Shannon
    Li, Qing
    Ding, Bowei
    Kossinna, Pathum
    Campbell, Simone
    Wu, Jingjing
    Greenberg, Matthew
    Long, Quan
    [J]. BRIEFINGS IN BIOINFORMATICS, 2021, 22 (04)
  • [7] Size, power and false discovery rates
    Efron, Bradley
    [J]. ANNALS OF STATISTICS, 2007, 35 (04) : 1351 - 1377
  • [8] Association of loss-of-function mutations in the ABCA1 gene with high-density lipoprotein cholesterol levels and risk of ischemic heart disease
    Frikke-Schmidt, Ruth
    Nordestgaard, Borge G.
    Stene, Maria C. A.
    Sethi, Amar A.
    Remaley, Alan T.
    Schnohr, Peter
    Grande, Peer
    Tybjaerg-Hansen, Anne
    [J]. JAMA-JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION, 2008, 299 (21): : 2524 - 2532
  • [9] A gene-based association method for mapping traits using reference transcriptome data
    Gamazon, Eric R.
    Wheeler, Heather E.
    Shah, Kaanan P.
    Mozaffari, Sahar V.
    Aquino-Michaels, Keston
    Carroll, Robert J.
    Eyler, Anne E.
    Denny, Joshua C.
    Nicolae, Dan L.
    Cox, Nancy J.
    Im, Hae Kyung
    [J]. NATURE GENETICS, 2015, 47 (09) : 1091 - +
  • [10] Integrative approaches for large-scale transcriptome-wide association studies
    Gusev, Alexander
    Ko, Arthur
    Shi, Huwenbo
    Bhatia, Gaurav
    Chung, Wonil
    Penninx, Brenda W. J. H.
    Jansen, Rick
    de Geus, Eco J. C.
    Boomsma, Dorret I.
    Wright, Fred A.
    Sullivan, Patrick F.
    Nikkola, Elina
    Alvarez, Marcus
    Civelek, Mete
    Lusis, Aldons J.
    Lehtimaki, Terho
    Raitoharju, Emma
    Kahonen, Mika
    Seppala, Ilkka
    Raitakari, Olli T.
    Kuusisto, Johanna
    Laakso, Markku
    Price, Alkes L.
    Pajukanta, Paivi
    Pasaniuc, Bogdan
    [J]. NATURE GENETICS, 2016, 48 (03) : 245 - 252