Carbonyl-linked cobalt polyphthalocyanines as high-selectivity catalyst for electrochemical CO2 reduction

被引:1
作者
Jin, Haisen [1 ,2 ]
Di, Yajing [1 ,2 ]
Gu, Yueang [1 ,2 ]
Chen, Yu [1 ,2 ]
Dou, Meiling [1 ,2 ]
Zhang, Zhengping [1 ,2 ]
Wang, Feng [1 ,2 ]
机构
[1] Beijing Univ Chem Technol, State Key Lab Chem Resource Engn, Beijing Key Lab Electrochem Proc & Technol Mat, Beijing 100029, Peoples R China
[2] Beijing Univ Chem Technol, Beijing Adv Innovat Ctr Soft Matter Sci & Engn, Beijing 100029, Peoples R China
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
PHTHALOCYANINE; DIOXIDE;
D O I
10.1039/d3cc05844a
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
One type of carbonyl-linked cobalt polyphthalocyanine (CL-CoPPc) is synthesised as catalysts for use in electrochemical carbon dioxide (CO2) reduction (ECR). Carbonyl linkages can decrease the intermolecular pi-pi stacking, and serve as intramolecular "gullies" to impede proton transfer and the hydrogen evolution reaction (HER). Therefore, the CL-CoPPc exhibits highly active and selective CO2 reduction to carbon monoxide (CO).
引用
收藏
页码:1715 / 1718
页数:4
相关论文
共 50 条
  • [31] Carbon-based catalysts for electrochemical CO2 reduction
    Jia, Chen
    Dastafkan, Kamran
    Ren, Wenhao
    Yang, Wanfeng
    Zhao, Chuan
    SUSTAINABLE ENERGY & FUELS, 2019, 3 (11): : 2890 - 2906
  • [32] Transition metal macrocycles for heterogeneous electrochemical CO2 reduction
    Lv, Fang
    Han, Na
    Qiu, Yuan
    Liu, Xijun
    Luo, Jun
    Li, Yanguang
    COORDINATION CHEMISTRY REVIEWS, 2020, 422
  • [33] Theoretical Investigations into Defected Graphene for Electrochemical Reduction of CO2
    Siahrostami, Samira
    Jiang, Kun
    Karamad, Mohammadreza
    Chan, Karen
    Wang, Haotian
    Norskov, Jens
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2017, 5 (11): : 11080 - 11085
  • [34] Fabrication of Au Catalysts for Electrochemical Reduction of CO2 to Syngas
    Ham, Yu Seok
    Kim, Myung Jun
    Choi, Jihui
    Choe, Seunghoe
    Lim, Taeho
    Kim, Soo-Kil
    Kim, Jae Jeong
    JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2016, 16 (10) : 10846 - 10852
  • [35] Combining First-Principles Kinetics and Experimental Data to Establish Guidelines for Product Selectivity in Electrochemical CO2 Reduction
    Kastlunger, Georg
    Heenen, Hendrik H.
    Govindarajan, Nitish
    ACS CATALYSIS, 2023, 13 (07) : 5062 - 5072
  • [36] Utilization of carbon nanotube and graphene in electrochemical CO2 reduction
    Sun, Xueliang
    Qi Zhang
    Li, Qingqing
    Zhang Xurui
    Shao, Xiaolin
    Jin Yi
    Zhang, Jiujun
    Liu, Yuyu
    BIOINTERFACE RESEARCH IN APPLIED CHEMISTRY, 2020, 10 (04): : 5815 - 5827
  • [37] CO poisoning of silver gas diffusion electrodes in electrochemical CO2 reduction
    Osiewacz, Jens
    Loeffelholz, Marco
    Weseler, Lydia
    Turek, Thomas
    ELECTROCHIMICA ACTA, 2023, 445
  • [38] ZrO2 nanoparticles anchored on nitrogen-doped carbon nanosheets as efficient catalyst for electrochemical CO2 reduction
    Miao, Zhengpei
    Hu, Pei
    Nie, Chuanye
    Xie, Huan
    Fu, Wenli
    Li, Qing
    JOURNAL OF ENERGY CHEMISTRY, 2019, 38 : 114 - 118
  • [39] Nanoconfinement Allows a Less Active Cascade Catalyst to Produce More C2+Products in Electrochemical CO2 Reduction
    V. Somerville, Samuel
    O'Mara, Peter B.
    Benedetti, Tania M.
    Cheong, Soshan
    Schuhmann, Wolfgang
    Tilley, Richard D.
    Gooding, J. Justin
    JOURNAL OF PHYSICAL CHEMISTRY C, 2023, 127 (01) : 289 - 299
  • [40] Trends in oxygenate/hydrocarbon selectivity for electrochemical CO(2) reduction to C2 products
    Peng, Hong-Jie
    Tang, Michael T.
    Stenlid, Joakim Halldin
    Liu, Xinyan
    Abild-Pedersen, Frank
    NATURE COMMUNICATIONS, 2022, 13 (01)