High-temperature phase stability of Y2O3 and SiO2 co-doped ZrO2 powder

被引:1
作者
Gong, Jianping [1 ]
Gao, Pengfei [1 ]
Han, Guofeng [2 ]
Ma, Qianqian [1 ]
Wang, Xiaoming [2 ]
Chen, Silin [1 ]
Yang, Baijun [3 ]
机构
[1] Southwest Univ Sci & Technol, Sch Mat & Chem, Mianyang 621010, Peoples R China
[2] Army Acad Armored Forces, Natl Key Lab Remfg, Beijing 100072, Peoples R China
[3] Chinese Acad Sci, Inst Met Res, Shenyang Natl Lab Mat Sci, Shenyang 110016, Peoples R China
基金
中国国家自然科学基金;
关键词
Zirconia; Co-precipitation; Doping; Phase stability; High-temperature; THERMAL-BARRIER COATINGS; HEAT-TREATMENT; BINARY-SYSTEM; CONDUCTIVITY; RESISTANCE; ZIRCONIA; BEHAVIOR; PROGRESS; TIO2;
D O I
10.1007/s10971-023-06274-9
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Y2O3 and SiO2 co-doped ZrO2 powders with various additions of SiO2 substitution Y2O3 have been prepared by co-precipitation method. The microstructure, phase and chemical composition, phase transformation process, and phase stability after repeated calcination at 1300 degrees C of these powders have been investigated. The main phase of all powders is t '-ZrO2. There is no phase transformation when the powders are heated from room temperature to 1400 degrees C. Increasing the ratio (1:4 to 4:1) of SiO2 substitution Y2O3 will reduce the tetragonality of the powder at 1300 degrees C. The amorphous SiO2 will inhibit the growth of grains to a certain extent during the calcination process. The increase of the substitution ratio of SiO2 for Y2O3 will lead to the m-ZrO2 more stable and the t '-ZrO2 more unstable. The relationship among the SiO2 substitution Y2O3 addition, phase composition, and high-temperature phase stability of the powders has been discussed. [GRAPHICS] .
引用
收藏
页码:619 / 625
页数:7
相关论文
共 50 条
[31]   PROCESSING AND SINTERING OF ULTRAFINE MGO-ZRO2 AND (MGO,Y2O3)-ZRO2 POWDERS [J].
READEY, MJ ;
LEE, RR ;
HALLORAN, JW ;
HEUER, AH .
JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 1990, 73 (06) :1499-1503
[32]   ???????Study on thermal shock resistance of Sc2O3 and Y2O3 co-stabilized ZrO2 thermal barrier coatings [J].
Dong, Y. S. ;
Yan, C. L. ;
Li, J. ;
Jiang, Z. C. ;
Mo, W. L. ;
Zhang, Q. J. .
CERAMICS INTERNATIONAL, 2023, 49 (12) :20034-20040
[33]   The corrosion behavior of Sc2O3-Y2O3 co-doped ZrO2 influenced by Sc2O3 content in CMAS at 1300 °C [J].
Liao, Yuxuan ;
Dai, Yifei ;
Zhai, Yifan ;
He, Aoping ;
He, Huan ;
Liang, Tianquan .
JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2024, 44 (02) :1179-1187
[34]   Study of the lyophilic properties and cytotoxity of nanostructured bioceramics based on the ZrO2–Y2O3–СeO2 and ZrO2–Y2O3–Al2O3 systems [J].
N. Yu. Koval’ko ;
M. V. Kalinina ;
L. V. Morozova ;
M. Yu. Arsent’ev ;
K. A. Kolobov ;
O. A. Shilova .
Glass Physics and Chemistry, 2016, 42 :609-614
[35]   Compacting of Highly Dispersed ZrO2(Y2O3) Powders [J].
Burlachenko, A. G. ;
Mirovoy, Yu. A. ;
Rygin, A. V. ;
Buyakov, A. S. ;
Buyakova, S. P. .
PROCEEDINGS OF THE ADVANCED MATERIALS WITH HIERARCHICAL STRUCTURE FOR NEW TECHNOLOGIES AND RELIABLE STRUCTURES, 2018, 2051
[36]   Characterizing the residual glass in a MgO/Al2O3/SiO2/ZrO2/Y2O3 glass-ceramic [J].
Seidel, Sabrina ;
Patzig, Christian ;
Wisniewski, Wolfgang ;
Gawronski, Antje ;
Hu, Yongfeng ;
Hoeche, Thomas ;
Ruessel, Christian .
SCIENTIFIC REPORTS, 2016, 6
[37]   High-temperature plastic deformation of Er2O3-doped ZrO2 single crystals [J].
Martínez Fernández, J. ;
Pínto Gómez, A. R. ;
Quispe Cancapa, J. J. ;
de Arellano López, A. R. ;
Llorca, J. .
ACTA MATERIALIA, 2006, 54 (08) :2195-2204
[38]   Influence of Y2O3 Doping on Phase Evolution and Dielectric Characteristics of ZrO2 Ceramics [J].
Gao, Lanfeng ;
Shao, Yong ;
Xin, Yangmei ;
Yang, Dan ;
Zhang, Haizhong ;
Zhu, Minmin ;
Zhang, Li ;
Lu, Xiaoqiang .
MICROMACHINES, 2024, 15 (08)
[39]   The phase-stabilized behavior of Sc2O3-Y2O3 co-doped ZrO2 nanopowders by co-precipitation synthesis [J].
Zhou, Ju ;
Ren, Chunxiao ;
Tian, Chunlan ;
Omran, Mamdouh ;
Tang, Ju ;
Zhang, Fan ;
Chen, Guo .
CERAMICS INTERNATIONAL, 2024, 50 (13) :24823-24834
[40]   Effect of the Phase Composition and Local Crystal Structure on the Transport Properties of the ZrO2–Y2O3 and ZrO2–Gd2O3 Solid Solutions [J].
Agarkova E.A. ;
Borik M.A. ;
Bublik V.T. ;
Volkova T.V. ;
Kulebyakin A.V. ;
Kuritsyna I.E. ;
Larina N.A. ;
Lomonova E.E. ;
Milovich F.O. ;
Myzina V.A. ;
Ryabochkina P.A. ;
Tabachkova N.Y. .
Russian Microelectronics, 2019, 48 (08) :523-530