Toward Microbiome Engineering: Expanding the Repertoire of Genetically Tractable Members of the Human Gut Microbiome

被引:4
作者
Marsh, JamesW. [1 ]
Kirk, Christian [1 ]
Ley, Ruth E. [1 ]
机构
[1] Max Planck Inst Biol, Dept Microbiome Sci, Tubingen, Germany
关键词
microbiome; genetics; engineering; BACTEROIDES-FRAGILIS; CONJUGATIVE TRANSFER; PLASMID TRANSFORMATION; CLOSTRIDIUM-DIFFICILE; COMMENSAL BACTERIUM; RESTRICTION BARRIER; ESCHERICHIA-COLI; MAMMALIAN GUT; GENE-TRANSFER; DNA TRANSFER;
D O I
10.1146/annurev-micro-032421-112304
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
Genetic manipulation is necessary to interrogate the functions of microbes in their environments, such as the human gut microbiome. Yet, the vast majority of human gut microbiome species are not genetically tractable. Here, we review the hurdles to seizing genetic control of more species.We address the barriers preventing the application of genetic techniques to gut microbes and report on genetic systems currently under development. While methods aimed at genetically transforming many species simultaneously in situ show promise, they are unable to overcome many of the same challenges that exist for individual microbes. Unless a major conceptual breakthrough emerges, the genetic tractability of the microbiome will remain an arduous task. Increasing the list of genetically tractable organisms from the human gut remains one of the highest priorities for microbiome research and will provide the foundation for microbiome engineering.
引用
收藏
页码:427 / 449
页数:23
相关论文
共 158 条
  • [1] Expanding the Toolbox of Broad Host-Range Transcriptional Terminators for Proteobacteria through Metagenomics
    Amarelle, Vanesa
    Sanches-Medeiros, Ananda
    Silva-Rocha, Rafael
    Guazzaroni, Maria-Eugenia
    [J]. ACS SYNTHETIC BIOLOGY, 2019, 8 (04): : 647 - 654
  • [2] APARICIOMALDONA.C, 2021, BIORXIV, DOI DOI 10.1101/2021.12.28.474362
  • [3] Engineered E. coli That Detect and Respond to Gut Inflammation through Nitric Oxide Sensing
    Archer, Eric J.
    Robinson, Andra B.
    Sueel, Guerol M.
    [J]. ACS SYNTHETIC BIOLOGY, 2012, 1 (10): : 451 - 457
  • [4] Methodologies to increase the transformation efficiencies and the range of bacteria that can be transformed
    Aune, Trond Erik Vee
    Aachmann, Finn Lillelund
    [J]. APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 2010, 85 (05) : 1301 - 1313
  • [5] Horizontal Transfer of the Salmonella enterica Serovar Infantis Resistance and Virulence Plasmid pESI to the Gut Microbiota of Warm-Blooded Hosts
    Aviv, Gili
    Rahav, Galia
    Gal-Mor, Ohad
    [J]. MBIO, 2016, 7 (05):
  • [6] SOS, the formidable strategy of bacteria against aggressions
    Baharoglu, Zeynep
    Mazel, Didier
    [J]. FEMS MICROBIOLOGY REVIEWS, 2014, 38 (06) : 1126 - 1145
  • [7] Connecting Environment and Genome Plasticity in the Characterization of Transformation-Induced SOS Regulation and Carbon Catabolite Control of the Vibrio cholerae Integron Integrase
    Baharoglu, Zeynep
    Krin, Evelyne
    Mazel, Didier
    [J]. JOURNAL OF BACTERIOLOGY, 2012, 194 (07) : 1659 - 1667
  • [8] A mitochondrial-like aconitase in the bacterium Bacteroides fragilis:: Implications for the evolution of the mitochondrial Krebs cycle
    Baughn, AD
    Malamy, MH
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2002, 99 (07) : 4662 - 4667
  • [9] Biology and engineering of integrative and conjugative elements: Construction and analyses of hybrid ICEs reveal element functions that affect species-specific efficiencies
    Bean, Emily L. L.
    Herman, Calvin
    Anderson, Mary E. E.
    Grossman, Alan D. D.
    [J]. PLOS GENETICS, 2022, 18 (05):
  • [10] Exploiting CRISPR-Cas nucleases to produce sequence-specific antimicrobials
    Bikard, David
    Euler, Chad W.
    Jiang, Wenyan
    Nussenzweig, Philip M.
    Goldberg, Gregory W.
    Duportet, Xavier
    Fischetti, Vincent A.
    Marraffini, Luciano A.
    [J]. NATURE BIOTECHNOLOGY, 2014, 32 (11) : 1146 - 1150