Asymmetric Bidirectional Fusion Network for Remote Sensing Pansharpening

被引:7
作者
Zhao, Xin [1 ,2 ,3 ]
Guo, Jiayi [1 ,2 ]
Zhang, Yueting [1 ,2 ]
Wu, Yirong [1 ,2 ,3 ]
机构
[1] Chinese Acad Sci, Aerosp Informat Res Inst, Beijing 100190, Peoples R China
[2] Chinese Acad Sci, Key Lab Technol Geospatial Informat Proc & Applica, Beijing 100190, Peoples R China
[3] Univ Chinese Acad Sci, Sch Elect Elect & Commun Engn, Beijing 101408, Peoples R China
来源
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING | 2023年 / 61卷
基金
中国国家自然科学基金;
关键词
~Asymmetric modules; bidirectional learning; image fusion; pansharpening; IMAGE FUSION; ENHANCEMENT; FILTER; MS;
D O I
10.1109/TGRS.2023.3296510
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Pansharpening aims to generate a high-resolution multispectral (HR-MS) image given a paired panchromatic (PAN) image and low-resolution multispectral (LR-MS) image. Though the existing pansharpening methods have made remarkable progress, the fusion pipeline does not fully adapt to the distinct characteristics of the PAN and LR-MS images. In this article, to fully exploit the complementary modality of the two images, we propose a novel and efficient asymmetric bidirectional fusion network (ABFNet). The ABFNet consists of the two customized fusion modules with asymmetric architectures, which aim to reinforce the PAN and LR-MS images, respectively. Specifically, the spectral colorization (SC) module recalibrates the scale and bias of the PAN features using weights generated by the LR-MS features, which aims to inject spectral information into the PAN features without breaking their spatial continuity. To transfer spatial details from the PAN features into the LR-MS features, the spatial restoration codebook (SRC) module refines the LR-MS features with point-to-point restoration codebooks learned from the PAN features. By incorporating the two modules in multiple stages, ABFNet enjoys a high capability for capturing both spectral and spatial dependencies. Extensive experiments over multiple satellite datasets demonstrate the effectiveness of the proposed methods.
引用
收藏
页数:16
相关论文
共 50 条
[31]   Transformer-based dual path cross fusion for pansharpening remote sensing images [J].
Li, Zixu ;
Li, Jinjiang ;
Ren, Lu ;
Chen, Zheng .
INTERNATIONAL JOURNAL OF REMOTE SENSING, 2024, 45 (04) :1170-1200
[32]   Review of the pansharpening methods for remote sensing images based on the idea of meta-analysis: Practical discussion and challenges [J].
Meng Xiangchao ;
Shen Huanfeng ;
Li Huifang ;
Zhang Liangpei ;
Fu Randi .
INFORMATION FUSION, 2019, 46 :102-113
[33]   Detail-Injection-Model-Inspired Deep Fusion Network for Pansharpening [J].
Xiang, Zhikang ;
Xiao, Liang ;
Yang, Jingxiang ;
Liao, Wenzhi ;
Philips, Wilfried .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
[34]   Remote Sensing Image Pansharpening Using Deep Internal Learning With Residual Double-Attention Network [J].
Sustika, Rika ;
Suksmono, Andriyan B. ;
Danudirdjo, Donny ;
Wikantika, Ketut .
IEEE ACCESS, 2024, 12 :162285-162298
[35]   Remote Sensing Pansharpening with TV-H-1 Decomposition and PSO-Based Adaptive Weighting Method [J].
Sangani, Dhara J. ;
Thakker, Rajesh A. ;
Panchal, S. D. ;
Gogineni, Rajesh .
INTERNATIONAL JOURNAL OF IMAGE AND GRAPHICS, 2025, 25 (01)
[36]   Remote Sensing Pansharpening with TV-H-1 Decomposition and PSO-Based Adaptive Weighting Method [J].
Sangani, Dhara J. ;
Thakker, Rajesh A. ;
Panchal, S. D. ;
Gogineni, Rajesh .
INTERNATIONAL JOURNAL OF IMAGE AND GRAPHICS, 2023,
[37]   Mutiscale Hybrid Attention Transformer for Remote Sensing Image Pansharpening [J].
Zhu, Wengang ;
Li, Jinjiang ;
An, Zhiyong ;
Hua, Zhen .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61
[38]   CADUI: Cross-Attention-Based Depth Unfolding Iteration Network for Pansharpening Remote Sensing Images [J].
Li, Zhixuan ;
Li, Jinjiang ;
Zhang, Fan ;
Fan, Linwei .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61
[39]   Remote sensing data fusion using fruit fly optimization [J].
Ouahab, Abdelwhab ;
Belbachir, Mohamed Faouzi .
MULTIMEDIA TOOLS AND APPLICATIONS, 2021, 80 (02) :2951-2973
[40]   Pansharpening for Cloud-Contaminated Very High-Resolution Remote Sensing Images [J].
Meng, Xiangchao ;
Shen, Huanfeng ;
Yuan, Qiangqiang ;
Li, Huifang ;
Zhang, Liangpei ;
Sun, Weiwei .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2019, 57 (05) :2840-2854