F-3DNet: Extracting inner order of point cloud for 3D object detection in autonomous driving

被引:1
|
作者
Xu, Fenglei [1 ]
Zhao, Haokai [1 ]
Wu, Yifei [1 ]
Tao, Chongben [1 ]
机构
[1] Suzhou Univ Sci & Technol, 99 Xuefu Rd, Suzhou 215009, Peoples R China
关键词
3D object detection; Point cloud; Inner context;
D O I
10.1007/s11042-023-15643-z
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
3D object detection has aroused widespread concerns, in which point cloud research is the most popular one.Point clouds are always deemed as irregular and disordered, however implicit order actually exists due to laser arrangement and sequential scanning. Therefore, the authors improve 3D detection accuracy by exploring point cloud inner order, which contains context information but neglected before. In this paper, the authors propose a novel method termed Frustum 3DNet for 3D object detection from point clouds. Following inner order, rearranged feature matrix is constructed, and a pseudo panorama is generated from LiDAR data. Given 2D region proposals on the pseudo image, the authors extend them to 3D space and obtain frustum regions of interest. For each frustum, generate a sequence of small frustums by slicing over distance. To further cooperate with context information, a novel local context feature extraction module is introduced. The extracted context features are concatenated with frustum features afterwards. The feature map is fed to a fully convolutional network , followed by a classifier and a regressor. Refinement and Fusion with RGB input are attached for outcome improvement. Ablation studies verify the efficacy of context extraction component and the corresponding model architecture in this paper. The authors present experiments on KITTI and Nuscenes datasets and F-3DNet outperforms existing methods at the time of submission.
引用
收藏
页码:8499 / 8516
页数:18
相关论文
共 50 条
  • [1] F-3DNet: Extracting inner order of point cloud for 3D object detection in autonomous driving
    Fenglei Xu
    Haokai Zhao
    Yifei Wu
    Chongben Tao
    Multimedia Tools and Applications, 2024, 83 : 8499 - 8516
  • [2] Denoising and Reducing Inner Disorder in Point Clouds for Improved 3D Object Detection in Autonomous Driving
    Xu, Weifan
    Jin, Jin
    Xu, Fenglei
    Li, Ze
    Tao, Chongben
    ELECTRONICS, 2023, 12 (11)
  • [3] 3D object detection based on point cloud in automatic driving scene
    Li, Hai-Sheng
    Lu, Yan-Ling
    MULTIMEDIA TOOLS AND APPLICATIONS, 2024, 83 (05) : 13029 - 13044
  • [4] 3D object detection based on point cloud in automatic driving scene
    Hai-Sheng Li
    Yan-Ling Lu
    Multimedia Tools and Applications, 2024, 83 : 13029 - 13044
  • [5] 3D Object Detection for Autonomous Driving: A Comprehensive Survey
    Mao, Jiageng
    Shi, Shaoshuai
    Wang, Xiaogang
    Li, Hongsheng
    INTERNATIONAL JOURNAL OF COMPUTER VISION, 2023, 131 (08) : 1909 - 1963
  • [6] A Review of 3D Object Detection for Autonomous Driving of Electric Vehicles
    Dai, Deyun
    Chen, Zonghai
    Bao, Peng
    Wang, Jikai
    WORLD ELECTRIC VEHICLE JOURNAL, 2021, 12 (03)
  • [7] Enriching 3D Object Detection in Autonomous Driving for Emergency Scenarios: Leveraging Point Cloud Data with CARLA Simulator for Automated Annotation of Rare 3D Objects
    Jaiswal, Chandra
    Penumatcha, Harsha
    Varma, Sasank
    AlHmoud, Issa W.
    Islam, A. K. M. Kamrul
    Gokaraju, Balakrishna
    SOUTHEASTCON 2024, 2024, : 1137 - 1143
  • [8] Object Detection in 3D Point Cloud Based on ECA Mechanism
    Wang, Xinkai
    Jia, Xu
    Zhang, Miyuan
    Lu, Houda
    JOURNAL OF CIRCUITS SYSTEMS AND COMPUTERS, 2023, 32 (05)
  • [9] 3D Object Detection with Fusion Point Attention Mechanism in LiDAR Point Cloud
    Liu Weili
    Zhu Deli
    Luo Huahao
    Li Yi
    ACTA PHOTONICA SINICA, 2023, 52 (09)
  • [10] 3D object detection for autonomous driving: Methods, models, sensors, data, and challenges
    Ghasemieh A.
    Kashef R.
    Transportation Engineering, 2022, 8