Time Optimal Feedback Control for 3D Navier-Stokes-Voigt Equations

被引:0
作者
Li, Yunxiang [1 ,2 ]
Bin, Maojun [1 ]
Shi, Cuiyun [3 ]
机构
[1] Yulin Normal Univ, Guangxi Coll & Univ Key Lab Complex Syst Optimizat, Yulin 537000, Peoples R China
[2] Hunan City Univ, Coll Sci, Yiyang 413000, Peoples R China
[3] Guilin Univ Technol Nanning, Sch Basic Sci, Nanning 530001, Peoples R China
来源
SYMMETRY-BASEL | 2023年 / 15卷 / 05期
关键词
3D Navier-Stokes-Voigt equations; admissible trajectories set; admissible control set; feedback control; time optimal control; NONCONVEX OPTIMAL-CONTROL; SENSITIVITY-ANALYSIS; RELAXATION; ATTRACTOR; FLOW;
D O I
10.3390/sym15051127
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this article, we discuss a time optimal feedback control for asymmetrical 3D Navier-Stokes-Voigt equations. Firstly, we consider the existence of the admissible trajectories for the asymmetrical 3D Navier-Stokes-Voigt equations by using the well-known Cesari property and the Fillippove's theorem. Secondly, we study the existence result of a time optimal control for the feedback control systems. Lastly, asymmetrical Clarke's subdifferential inclusions and asymmetrical 3D Navier-Stokes-Voigt differential variational inequalities are given to explain our main results.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] [Anonymous], 1997, HDB MULTIVALUED ANAL, DOI [DOI 10.1007/978-1-4615-6359-4, 10.1007/978-1-4615-6359-4]
  • [2] [Anonymous], 1998, Nonsmooth Analysis and Control Theory
  • [3] [Anonymous], 1991, KODAI MATH J, DOI DOI 10.2996/KMJ/1138039397
  • [4] Strong Solutions of the Incompressible Navier-Stokes-Voigt Model
    Baranovskii, Evgenii S.
    [J]. MATHEMATICS, 2020, 8 (02)
  • [6] Berkovitz L. D., 1974, OPTIMAL CONTROL THEO, DOI [10.1002/9783527639700.ch5, DOI 10.1007/978-1-4757-6097-2]
  • [7] PROPERTIES OF THE SET OF ADMISSIBLE "STATE CONTROL" PAIR FOR A CLASS OF FRACTIONAL SEMILINEAR EVOLUTION CONTROL SYSTEMS
    Bin, Maojun
    Deng, Haiyun
    Li, Yunxiang
    Zhao, Jing
    [J]. FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2021, 24 (04) : 1275 - 1298
  • [8] On the "bang-bang" principle for nonlinear evolution hemivariational inequalities control systems
    Bin, Maojun
    Liu, Zhenhai
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2019, 480 (01)
  • [9] Relaxation in nonconvex optimal control for nonlinear evolution hemivariational inequalities
    Bin, Maojun
    Liu, Zhenhai
    [J]. NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2019, 50 : 613 - 632
  • [10] Time optimal control for semilinear fractional evolution feedback control systems
    Bin, Maojun
    [J]. OPTIMIZATION, 2019, 68 (04) : 819 - 832