Quasi-periodic traveling waves for forced Kirchhoff equations with strong damping on flat tori

被引:2
作者
Chen, Bochao [1 ]
机构
[1] Northeast Normal Univ, Ctr Math & Interdisciplinary Sci, Sch Math & Stat, Changchun 130024, Jilin, Peoples R China
基金
中国博士后科学基金;
关键词
Kirchhoff equations; Strong damping; Quasi-periodic solutions; Traveling waves; NONLINEAR SCHRODINGER-EQUATION; LONG-TIME DYNAMICS; GLOBAL SOLVABILITY; RESPONSE SOLUTIONS; SOBOLEV NORMS; EXISTENCE; BEHAVIOR;
D O I
10.1016/j.jde.2023.04.023
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we are concerned with Kirchhoff equations with strong damping and quasi-periodic external forcing on arbitrary flat tori. Such models arise from nonlinear forced vibrations of multidimensional bodies in which the dependence of the tension on the deformation cannot be neglected. We establish the existence of quasi-periodic traveling waves whose frequency is consistent with that of the forcing term. Due to strong damping, we don't impose any non-resonance conditions. Our arguments provide a general framework for studying singular perturbation problems with strong damping. (c) 2023 Elsevier Inc. All rights reserved.
引用
收藏
页码:465 / 485
页数:21
相关论文
共 36 条
[1]   Existence of periodic solutions of a system of damped wave equations in thin domains [J].
Abdelhedi, Bouthaina .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2008, 20 (04) :767-800
[2]  
[Anonymous], 1967, Comm. Pure Appl. Math.
[3]  
[Anonymous], 1940, Bull. Acad. Sci. URSS. Ser. Math. Izvestia Akad. Nauk SSSR
[4]   On the well-posedness of the Kirchhoff string [J].
Arosio, A ;
Panizzi, S .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1996, 348 (01) :305-330
[5]   KAM for quasi-linear and fully nonlinear forced perturbations of Airy equation [J].
Baldi, Pietro ;
Berti, Massimiliano ;
Montalto, Riccardo .
MATHEMATISCHE ANNALEN, 2014, 359 (1-2) :471-536
[6]   Long time dynamics of Schrodinger and wave equations on flat tori [J].
Berti, M. ;
Maspero, A. .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2019, 267 (02) :1167-1200
[7]  
Bourgain J, 2007, ANN MATH STUD, V163, P1
[8]   The proof of the l2 Decoupling Conjecture [J].
Bourgain, Jean ;
Demeter, Ciprian .
ANNALS OF MATHEMATICS, 2015, 182 (01) :351-389
[9]  
Bryuno A. D., 1971, Trudy Moskovskogo Matematicheskogo Obshchestva, V25, P119
[10]   RESPONSE SOLUTIONS FOR QUASI-PERIODICALLY FORCED, DISSIPATIVE WAVE EQUATIONS [J].
Calleja, Renato C. ;
Celletti, Alessandra ;
Corsi, Livia ;
De La Llave, Rafael .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2017, 49 (04) :3161-3207