Point of care approaches to 3D bioprinting for wound healing applications

被引:10
|
作者
Wallace, Eileen R. [1 ]
Yue, Zhilian [1 ]
Dottori, Mirella [2 ]
Wood, Fiona M. [3 ,4 ,5 ]
Fear, Mark [3 ,5 ]
Wallace, Gordon G. [1 ]
Beirne, Stephen [1 ]
机构
[1] Univ Wollongong, Intelligent Polymer Res Inst, Wollongong, NSW, Australia
[2] Univ Wollongong, Illawarra Hlth & Med Res Inst, Wollongong, NSW, Australia
[3] Univ Western Australia, Sch Biomed Sci, Burn Injury Res Unit, Crawley, WA, Australia
[4] Perth Childrens Hosp, Fiona Stanley Hosp, Burns Serv Western Australia, Nedlands, WA, Australia
[5] Fiona Stanley Hosp, Fiona Wood Fdn, Murdoch, WA, Australia
来源
PROGRESS IN BIOMEDICAL ENGINEERING | 2023年 / 5卷 / 02期
关键词
skin regeneration; wound healing; tissue engineering; point-of-care; 3D bioprinting; DERMAL SUBSTITUTES; CELL-SUSPENSION; SKIN-GRAFT; STEM-CELLS; KERATINOCYTES; REGENERATION; SCAFFOLDS; COLLAGEN; ANATOMY; REPAIR;
D O I
10.1088/2516-1091/acceeb
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
In the quest to improve both aesthetic and functional outcomes for patients, the clinical care of full-thickness cutaneous wounds has undergone significant development over the past decade. A shift from replacement to regeneration has prompted the development of skin substitute products, however, inaccurate replication of host tissue properties continues to stand in the way of realising the ultimate goal of scar-free healing. Advances in three-dimensional (3D) bioprinting and biomaterials used for tissue engineering have converged in recent years to present opportunities to progress this field. However, many of the proposed bioprinting strategies for wound healing involve lengthy in-vitro cell culture and construct maturation periods, employ complex deposition technologies, and lack credible point of care (POC) delivery protocols. In-situ bioprinting is an alternative strategy which can combat these challenges. In order to survive the journey to bedside, printing protocols must be curated, and biomaterials/cells selected which facilitate intraoperative delivery. In this review, the current status of in-situ 3D bioprinting systems for wound healing applications is discussed, highlighting the delivery methods employed, biomaterials/cellular components utilised and anticipated translational challenges. We believe that with the growth of collaborative networks between researchers, clinicians, commercial, ethical, and regulatory experts, in-situ 3D bioprinting has the potential to transform POC wound care treatment.
引用
收藏
页数:22
相关论文
共 50 条
  • [1] 3D Bioprinting and Its Role in a Wound Healing Renaissance
    Tanfani, Joseph D.
    Monpara, Jasmin D.
    Jonnalagadda, Sriramakamal
    ADVANCED MATERIALS TECHNOLOGIES, 2023, 8 (17)
  • [2] A Feasibility Study on 3D Bioprinting of Microfat Constructs Towards Wound Healing Applications
    Schmitt, Trevor
    Katz, Nathan
    Kishore, Vipuil
    FRONTIERS IN BIOENGINEERING AND BIOTECHNOLOGY, 2021, 9
  • [3] Advances in 3D skin bioprinting for wound healing and disease modeling
    Zhang, Mengde
    Zhang, Chao
    Li, Zhao
    Fu, Xiaobing
    Huang, Sha
    REGENERATIVE BIOMATERIALS, 2023, 10
  • [4] 3D bioprinting and the current applications in tissue engineering
    Huang, Ying
    Zhang, Xiao-Fei
    Gao, Guifang
    Yonezawa, Tomo
    Cui, Xiaofeng
    BIOTECHNOLOGY JOURNAL, 2017, 12 (08)
  • [5] Wound and Skin Healing in Space: The 3D Bioprinting Perspective
    Cubo-Mateo, Nieves
    Gelinsky, Michael
    FRONTIERS IN BIOENGINEERING AND BIOTECHNOLOGY, 2021, 9
  • [6] 3D printed drug loaded nanomaterials for wound healing applications
    Yayehrad, Ashagrachew Tewabe
    Siraj, Ebrahim Abdella
    Matsabisa, Motlalepula
    Birhanu, Gebremariam
    REGENERATIVE THERAPY, 2023, 24 : 361 - 376
  • [7] 3D bioprinting and Rigenera® micrografting technology: A possible countermeasure for wound healing in spaceflight
    Aliberti, Flaminia
    Paolin, Elisa
    Benedetti, Laura
    Cusella, Gabriella
    Ceccarelli, Gabriele
    FRONTIERS IN BIOENGINEERING AND BIOTECHNOLOGY, 2022, 10
  • [8] Functional materials of 3D bioprinting for wound dressings and skin tissue engineering applications: A review
    Fang, Huan
    Xu, Jie
    Ma, Hailin
    Liu, Jiaqi
    Xing, Erpai
    Cheng, Yuen Yee
    Wang, Hong
    Nie, Yi
    Pan, Bo
    Song, Kedong
    INTERNATIONAL JOURNAL OF BIOPRINTING, 2023, 9 (05) : 166 - 191
  • [9] The 3D Bioprinted Scaffolds for Wound Healing
    Antezana, Pablo Edmundo
    Municoy, Sofia
    Alvarez-Echazu, Maria Ines
    Santo-Orihuela, Pablo Luis
    Catalano, Paolo Nicolas
    Al-Tel, Taleb H.
    Kadumudi, Firoz Babu
    Dolatshahi-Pirouz, Alireza
    Orive, Gorka
    Desimone, Martin Federico
    PHARMACEUTICS, 2022, 14 (02)
  • [10] Emerging 3D bioprinting applications in plastic surgery
    Yang, Pu
    Ju, Yikun
    Hu, Yue
    Xie, Xiaoyan
    Fang, Bairong
    Lei, Lanjie
    BIOMATERIALS RESEARCH, 2023, 27 (01)