Density Derivation Using Controlled Spacecraft Potential in Earth's Magnetosheath and Multi-Scale Fluctuation Analysis

被引:0
作者
Teubenbacher, D. [1 ,2 ]
Roberts, O. W. [1 ]
Nakamura, R. [1 ]
Narita, Y. [1 ]
Voeroes, Z. [1 ]
Torkar, K. [1 ]
Lindqvist, P. -A. [3 ]
Ergun, R. E. [4 ]
机构
[1] Austrian Acad Sci, Space Res Inst, Graz, Austria
[2] Karl Franzens Univ Graz, Inst Phys, Graz, Austria
[3] Royal Inst Technol, Div Space & Plasma Phys, Stockholm, Sweden
[4] Univ Colorado, Lab Atmospher & Space Phys, Boulder, CO USA
关键词
plasma density derivation; multi-point; multi-scale; compressive turbulence; magnetosheath; controlled spacecraft potential; SOLAR-WIND; TURBULENCE; INSTRUMENT; SURFACE;
D O I
10.1029/2022JA031041
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
In situ measurements from the Magnetospheric Multiscale (MMS) mission are used to estimate electron density from spacecraft potential and investigate compressive turbulence in the Earth's magnetosheath. During the MMS Solar Wind Turbulence Campaign in February 2019, the four MMS spacecraft were arranged in a logarithmic line constellation enabling the study of measurements from multiple spacecraft at varying distances. We estimate the electron density from spacecraft potential for a time interval in which the ion emitters actively control the potential. The derived electron density data product has a higher temporal resolution than the plasma instruments, enabling the examination of fluctuation for scales down to the sub-ion range. The inter-spacecraft separations range from 132 to 916 km; this corresponds to scales of 3.5-24.1 ion inertial lengths. As an example, the derived density and magnetic field data are used to study fluctuations in the magnetosheath through time lags on a single spacecraft and spatial lags between pairs of spacecraft over almost one decade in scale. The results show an increase in anisotropy as the scale decreases, similar for the density and the magnetic field. This suggests different drivers in the strongly compressive magnetosheath and the weakly compressive solar wind. Compressive structures such as magnetic holes, compressive vortices and jets might play key roles.
引用
收藏
页数:14
相关论文
共 76 条
  • [21] Heliospheric coordinate systems
    Fränz, M
    Harper, D
    [J]. PLANETARY AND SPACE SCIENCE, 2002, 50 (02) : 217 - 233
  • [22] Frisch U., 1995, Turbulence: The Legacy of A.N. Kolmogorov
  • [23] Garner R, 2019, ECS J SOLID STATE SC, V9, DOI 10.1149/2.0242001JSS
  • [24] TOWARD A THEORY OF INTERSTELLAR TURBULENCE .2. STRONG ALFVENIC TURBULENCE
    GOLDREICH, P
    SRIDHAR, S
    [J]. ASTROPHYSICAL JOURNAL, 1995, 438 (02) : 763 - 775
  • [25] Enhanced Escape of Spacecraft Photoelectrons Caused by Langmuir and Upper Hybrid Waves
    Graham, D. B.
    Vaivads, A.
    Khotyaintsev, Yu, V
    Eriksson, A., I
    Andre, M.
    Malaspina, D. M.
    Lindqvist, P-A
    Gershman, D. J.
    Plaschke, F.
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2018, 123 (09) : 7534 - 7553
  • [26] THE SLOW-MODE NATURE OF COMPRESSIBLE WAVE POWER IN SOLAR WIND TURBULENCE
    Howes, G. G.
    Bale, S. D.
    Klein, K. G.
    Chen, C. H. K.
    Salem, C. S.
    TenBarge, J. M.
    [J]. ASTROPHYSICAL JOURNAL LETTERS, 2012, 753 (01)
  • [27] KINETIC TURBULENCE IN THE TERRESTRIAL MAGNETOSHEATH: CLUSTER OBSERVATIONS
    Huang, S. Y.
    Sahraoui, F.
    Deng, X. H.
    He, J. S.
    Yuan, Z. G.
    Zhou, M.
    Pang, Y.
    Fu, H. S.
    [J]. ASTROPHYSICAL JOURNAL LETTERS, 2014, 789 (02)
  • [28] Solar wind magnetic holes can cross the bow shock and enter the magnetosheath
    Karlsson, Tomas
    Trollvik, Henriette
    Raptis, Savvas
    Nilsson, Hans
    Madanian, Hadi
    [J]. ANNALES GEOPHYSICAE, 2022, 40 (06) : 687 - 699
  • [29] Khotyaintsev Y., 2017, Spin-plane Double Probe instrument/Axial Double Probe instrument (SDP/ADP) Data Products Guide
  • [30] Extracting the scaling exponents of a self-affine, non-Gaussian process from a finite-length time series
    Kiyani, K.
    Chapman, S. C.
    Hnat, B.
    [J]. PHYSICAL REVIEW E, 2006, 74 (05):