Perceval: A Software Platform for Discrete Variable Photonic Quantum Computing

被引:0
作者
Heurtel, Nicolas [1 ,2 ]
Fyrillas, Andreas [1 ,3 ]
de Gliniasty, Gregoire [1 ]
Le Bihan, Raphael [1 ]
Malherbe, Sebastien [4 ]
Pailhas, Marceau [1 ]
Bertasi, Eric [1 ]
Bourdoncle, Boris [1 ]
Emeriau, Pierre-Emmanuel [1 ]
Mezher, Rawad [1 ]
Music, Luka [1 ]
Belabas, Nadia [3 ]
Valiron, Benoit [2 ]
Senellart, Pascale [3 ]
Mansfield, Shane [1 ]
Senellart, Jean [1 ]
机构
[1] Quandela, 7 Rue Leonard da Vinci, F-91300 Massy, France
[2] Univ Paris Saclay, ENS Paris Saclay, CNRS, Cent Supelec,Inria,LMF, F-91190 Gif Sur Yvette 15, France
[3] Univ Paris Saclay, Ctr Nanosci & Nanotechnol, CNRS, UMR 9001, 10 Blvd Thomas Gobert, F-91120 Palaiseau, France
[4] Ecole Normale Super PSL, Dept Phys, 45 Rue Ulm, F-75230 Paris 05, France
来源
QUANTUM | 2023年 / 7卷
关键词
COMPUTATIONAL ADVANTAGE; ALGORITHM;
D O I
暂无
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We introduce Perceval, an open-source software platform for simulating and in-terfacing with discrete-variable photonic quantum computers, and describe its main features and components. Its Python front-end allows photonic circuits to be composed from basic photonic building blocks like photon sources, beam splitters, phase-shifters and detectors. A variety of computational back-ends are available and optimised for different use-cases. These use state-of-the-art simulation techniques covering both weak simulation, or sampling, and strong simulation. We give examples of Perceval in action by reproducing a variety of photonic experiments and simulating photonic implementations of a range of quantum algorithms, from Grover's and Shor's to examples of quantum machine learning. Perceval is intended to be a useful toolkit for experimentalists wish-ing to easily model, design, simulate, or optimise a discrete-variable photonic experiment, for theoreticians wishing to design algorithms and applications for discrete-variable photonic quantum computing platforms, and for application designers wishing to evaluate algorithms on available state-of-the-art photonic quantum computers.
引用
收藏
页数:52
相关论文
共 79 条
[51]   Shor's Quantum Factoring Algorithm on a Photonic Chip [J].
Politi, Alberto ;
Matthews, Jonathan C. F. ;
O'Brien, Jeremy L. .
SCIENCE, 2009, 325 (5945) :1221-1221
[52]  
Preskill J, 2012, Arxiv, DOI [arXiv:1203.5813, 10.48550/arXiv.1203.5813]
[53]   Quantum Computing in the NISQ era and beyond [J].
Preskill, John .
QUANTUM, 2018, 2
[54]   Linear optical controlled-NOT gate in the coincidence basis [J].
Ralph, TC ;
Langford, NK ;
Bell, TB ;
White, AG .
PHYSICAL REVIEW A, 2002, 65 (06) :5
[55]  
Raschka S, 2019, Python machine learning: machine learning and deep learning with Python, scikit-learn, and TensorFlow 2
[56]   EXPERIMENTAL REALIZATION OF ANY DISCRETE UNITARY OPERATOR [J].
RECK, M ;
ZEILINGER, A ;
BERNSTEIN, HJ ;
BERTANI, P .
PHYSICAL REVIEW LETTERS, 1994, 73 (01) :58-61
[57]  
RIVEST RL, 1978, COMMUN ACM, V21, P120, DOI 10.1145/357980.358017
[58]  
Roy T, 2022, Arxiv, DOI arXiv:2201.00091
[59]   Direct dialling of Haar random unitary matrices [J].
Russell, Nicholas J. ;
Chakhmakhchyan, Levon ;
O'Brien, Jeremy L. ;
Laing, Anthony .
NEW JOURNAL OF PHYSICS, 2017, 19
[60]  
Ryser HJ, 1963, The Carus Mathematical Monographs, V14