Generalized fractional Wentzel-Kramers-Brillouin approximation for electron tunnelling across rough metal interface

被引:4
作者
Ramzan, M. W. [1 ]
Riaz, K. [1 ]
Mehmood, M. Q. [1 ,2 ]
Zubair, M. [1 ,2 ]
Massoud, Y. [2 ]
机构
[1] Informat Technol Univ ITU, Dept Elect Engn, MicroNano Lab, Lahore 54000, Pakistan
[2] King Abdullah Univ Sci & Technol KAUST, Comp Elect & Math Sci & Engn CEMSE Div, Innovat Technol Labs ITL, Thuwal 23955, Saudi Arabia
来源
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES | 2023年 / 479卷 / 2270期
关键词
rough metal interface; fractional calculus; fractal media; rough surface; quantum tunnelling; Wentzel-Kramers-Brillouin approximation; FIELD-EMISSION; WAVE-EQUATION; ENERGY; PROPAGATION; REFLECTION; SURFACE; MODELS; COLD; LAW;
D O I
10.1098/rspa.2022.0600
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The conductive rough surfaces act as an integral part of several electron devices and systems. Electron tunnelling through the potential barrier imposed by the rough metal-vacuum interface is an important mechanism of charge transport in vacuum electron devices. Here, we analytically derive a generalized current-voltage relationship with a fractional image potential barrier that considers the reduced space-dimensionality encountered by the tunnelling electrons at a rough interface, in an effective manner. The traditional Schottky-Nordhiem equation based on the Schottky image potential barrier is shown to be a limiting case of our model for a perfectly flat surface. The fractional-dimension parameter used in this model accounts for the barrier reduction due to the geometrical roughness and it can be determined by fitting our model to a given current-voltage measurement. It is shown that the application of this model could reduce the error between measured current-voltage response and theoretical estimates based on the conventional model. This work provides an analytical framework for efficient design and engineering of quantum tunnelling in practical electron devices.
引用
收藏
页数:19
相关论文
共 65 条
[1]   The range and validity of the field current equation [J].
Abbott, FR ;
Henderson, JE .
PHYSICAL REVIEW, 1939, 56 (01) :113-118
[2]   Generalized Scaling Law for Exciton Binding Energy in Two-Dimensional Materials [J].
Ahmad, S. ;
Zubair, M. ;
Jalil, O. ;
Mehmood, M. Q. ;
Younis, U. ;
Liu, X. ;
Ang, K. W. ;
Ang, L. K. .
PHYSICAL REVIEW APPLIED, 2020, 13 (06)
[3]   Application of fractional Fowler-Nordheim law on field electron emission from tungsten and lanthanum hexaboride nano-scale emitters [J].
Al-Tabbakh, Ahmed A. ;
Madanat, Mazen A. ;
Mousa, Marwan S. .
PHILOSOPHICAL MAGAZINE, 2023, 103 (09) :860-871
[4]   Theoretical modeling of electron emission from graphene [J].
Ang, Y. S. ;
Liang, Shi-Jun ;
Ang, L. K. .
MRS BULLETIN, 2017, 42 (07) :506-510
[5]  
[Anonymous], 2021, MATLAB VERS 9 10 0 1
[6]  
Arfken G.B., 2013, MATH METHODS PHYS CO
[7]   Electromagnetic Green's function for fractional space [J].
Asad, H. ;
Mughal, M. J. ;
Zubair, M. ;
Naqvi, Q. A. .
JOURNAL OF ELECTROMAGNETIC WAVES AND APPLICATIONS, 2012, 26 (14-15) :1903-1910
[8]   REFLECTION AND TRANSMISSION AT DIELECTRIC-FRACTAL INTERFACE [J].
Asad, H. . ;
Zubair, M. . ;
Mughal, M. J. .
PROGRESS IN ELECTROMAGNETICS RESEARCH-PIER, 2012, 125 :543-558
[9]   All field emission models are wrong, horizontal ellipsis but are any of them useful? [J].
Ayari, Anthony ;
Vincent, Pascal ;
Perisanu, Sorin ;
Poncharal, Philippe ;
Purcell, Stephen T. .
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 2022, 40 (02)
[10]   Field-emission from parabolic tips: Current distributions, the net current, and effective emission area [J].
Biswas, Debabrata .
PHYSICS OF PLASMAS, 2018, 25 (04)