On the sum of left and right circulant matrices

被引:1
作者
Lettington, Matthew C. [1 ]
Schmidt, Karl Michael [1 ]
机构
[1] Cardiff Univ, Sch Math, 23 Senghennydd Rd, Cardiff CF24 4AG, Wales
关键词
Circulant matrices; Discrete Fourier transforms; Moore-Penrose inverses; Sum-systems;
D O I
10.1016/j.laa.2022.10.024
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider square matrices arising as the sum of left and right circulant matrices and derive asymptotics of the sequence of their powers. Particular emphasis is laid on the case where the matrix has consecutive integer entries; we find explicit formulae for the eigenvalues and eigenvectors of the matrix in this case and find its Moore-Penrose pseudoinverse. The calculation involves the discrete Fourier transform of integer vectors arising from sum systems and exhibits a resonance phenomenon. (c) 2022 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
引用
收藏
页码:62 / 85
页数:24
相关论文
共 11 条
  • [1] Coffey MW, 2017, J THEOR NOMBR BORDX, V29, P369
  • [2] Davis P.J., 1979, CIRCULANT MATRICES
  • [3] Some properties and applications of non-trivial divisor functions
    Hill, S. L.
    Huxley, M. N.
    Lettington, M. C.
    Schmidt, K. M.
    [J]. RAMANUJAN JOURNAL, 2020, 51 (03) : 611 - 628
  • [4] On superalgebras of matrices with symmetry properties
    Hill, S. L.
    Lettington, M. C.
    Schmidt, K. M.
    [J]. LINEAR & MULTILINEAR ALGEBRA, 2018, 66 (08) : 1538 - 1563
  • [5] On the structure of additive systems of integers
    Huxley, M. N.
    Lettington, M. C.
    Schmidt, K. M.
    [J]. PERIODICA MATHEMATICA HUNGARICA, 2019, 78 (02) : 178 - 199
  • [6] Ingleton A.W., 1956, J. Lond. Math. Soc., V1, P445, DOI [10.1112/jlms/s1-31.4.445, DOI 10.1112/JLMS/S1-31.4.445]
  • [7] A trio of Bernoulli relations, their implications for the Ramanujan polynomials and the special values of the Riemann zeta function
    Lettington, M. C.
    [J]. ACTA ARITHMETICA, 2013, 158 (01) : 1 - 31
  • [8] Lettington M.C., 2020, INTEGERS, VA61, P1
  • [9] Lettington MC, 2011, FUNCT APPROX COMMENT, V45, P165
  • [10] Penrose R., 1955, P CAMBRIDGE PHILOS S, V51, P406, DOI 10.1017/S0305004100030401