Discrimination of Pericarpium Citri Reticulatae in different years using Terahertz Time-Domain spectroscopy combined with convolutional neural network

被引:38
作者
Liu, Yao [2 ]
Pu, Hongbin [1 ,3 ,4 ,5 ]
Li, Qian [6 ]
Sun, Da-Wen [1 ,3 ,4 ,5 ,7 ]
机构
[1] South China Univ Technol, Sch Food Sci & Engn, Guangzhou 510641, Peoples R China
[2] Zhongkai Univ Agr & Engn, Sch Mech & Elect Engn, Guangzhou 510225, Peoples R China
[3] South China Univ Technol, Acad Contemporary Food Engn, Guangzhou Higher Educ Mega Ctr, Guangzhou 510006, Peoples R China
[4] Guangzhou Higher Educ Mega Ctr, Engn & Technol Res Ctr, Guangdong Prov Intelligent Sensing & Proc Control, Guangzhou 510006, Peoples R China
[5] Guangzhou Higher Educ Mega Ctr, Guangdong Prov Engn Lab Intelligent Cold Chain Log, Guangzhou 510006, Peoples R China
[6] Shenzhen Inst Terahertz Technol & Innovat, Shenzhen 518102, Guangdong, Peoples R China
[7] Univ Coll Dublin, Natl Univ Ireland, Agr & Food Sci Ctr, Food Refrigerat & Computerized Food Technol, Dublin, Ireland
关键词
Terahertz time-domain spectroscopy; Convolutional neural network; Pericarpium citri reticulatae; Storage years; Quality inspection; FOOD; IDENTIFICATION; FUNDAMENTALS; PRINCIPLES; RICE;
D O I
10.1016/j.saa.2022.122035
中图分类号
O433 [光谱学];
学科分类号
0703 ; 070302 ;
摘要
Pericarpium Citri Reticulatae (PCR) in longer storage years possess higher medicinal values, but their differ-entiation is difficult due to similar morphological characteristics. Therefore, this study investigated the feasibility of using terahertz time-domain spectroscopy (THz-TDS) combined with a convolutional neural network (CNN) to identify PCR samples stored from 1 to 20 years. The absorption coefficient and refractive index spectra in the range of 0.2-1.5 THz were acquired. Partial least squares discriminant analysis, random forest, least squares support vector machines, and CNN were used to establish discriminant models, showing better performance of the CNN model than the others. In addition, the output data points of the CNN intermediate layer were visu-alized, illustrating gradual changes in these points from overlapping to clear separation. Overall, THz-TDS combined with CNN models could realize rapid identification of different year PCRs, thus providing an efficient alternative method for PCR quality inspection.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Deep neural network classification of in vivo burn injuries with different etiologies using terahertz time-domain spectral imaging
    Osman, Omar B.
    Harris, Zachery B.
    Khani, Mahmoud E.
    Zhou, Juin W.
    Chen, Andrew
    Singer, Adam J.
    Arbab, M. Hassan
    BIOMEDICAL OPTICS EXPRESS, 2022, 13 (04): : 1855 - 1868
  • [22] Characterization of prospective explosive materials using terahertz time-domain spectroscopy
    Palka, Norbert
    Szala, Mateusz
    Czerwinska, Elzbieta
    APPLIED OPTICS, 2016, 55 (17) : 4575 - 4583
  • [23] Multilayered film monitoring using terahertz reflective time-domain spectroscopy
    Choi, Jindoo
    Kwon, Won Sik
    Kim, Kyung-Soo
    Kim, Soohyun
    FIFTH ASIA-PACIFIC OPTICAL SENSORS CONFERENCE, 2015, 9655
  • [24] Characterization of epitaxial semiconductor layers using terahertz time-domain spectroscopy
    Usami, M
    Iwamoto, T
    Akahori, H
    Tsumura, N
    Fukasawa, R
    Sakai, K
    BUNSEKI KAGAKU, 2003, 52 (06) : 455 - 460
  • [25] Amplitude Calibration in Terahertz Time-Domain Spectroscopy Using Attenuation Standards
    Hitoshi Iida
    Moto Kinoshita
    Journal of Infrared, Millimeter, and Terahertz Waves, 2018, 39 : 120 - 129
  • [26] Detection of Harmful Residues in Honey Using Terahertz Time-Domain Spectroscopy
    Massaouti, Maria
    Daskalaki, Christina
    Gorodetsky, Andrei
    Koulouklidis, Anastasios D.
    Tzortzakis, Stelios
    APPLIED SPECTROSCOPY, 2013, 67 (11) : 1264 - 1269
  • [27] Investigation of aging characteristics in explosive using terahertz time-domain spectroscopy
    Shi, Wei
    Dong, Chengang
    Hou, Lei
    Xing, Zhiyang
    Sun, Qian
    Zhang, Lihao
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2019, 33 (24):
  • [28] Classification for Breast Ultrasound Using Convolutional Neural Network with Multiple Time-Domain Feature Maps
    Kim, Hyungsuk
    Park, Juyoung
    Lee, Hakjoon
    Im, Geuntae
    Lee, Jongsoo
    Lee, Ki-Baek
    Lee, Heung Jae
    APPLIED SCIENCES-BASEL, 2021, 11 (21):
  • [29] Amplitude Calibration in Terahertz Time-Domain Spectroscopy Using Attenuation Standards
    Iida, Hitoshi
    Kinoshita, Moto
    JOURNAL OF INFRARED MILLIMETER AND TERAHERTZ WAVES, 2018, 39 (01) : 120 - 129
  • [30] Characterization and Classification of Coals and Rocks Using Terahertz Time-Domain Spectroscopy
    Wang, Xin
    Hu, Ke-xiang
    Zhang, Lei
    Yu, Xiao
    Ding, En-jie
    JOURNAL OF INFRARED MILLIMETER AND TERAHERTZ WAVES, 2017, 38 (02) : 248 - 260