Efficacy of the methods of age determination using artificial intelligence in panoramic radiographs - a systematic review

被引:4
作者
Nino-Sandoval, Tania Camila [1 ]
Doria-Martinez, Ana Milena [2 ]
Escobar, Ruby Amparo Vasquez [3 ]
Sanchez, Elizabeth Llano [4 ]
Rojas, Isabella Bermon [5 ]
Alvarez, Laura Cristina Vargas [5 ]
Mc Cann, David Stephen Fernandez [5 ]
Tamara-Patino, Liliana Marcela [6 ]
机构
[1] Univ Antioquia, Inst Natl Legal Med & Forens Sci, Res Inst, Fac Med,Res Ctr, Medellin, Colombia
[2] Inst Natl Legal Med & Forens Sci, Medellin, Colombia
[3] Natl Inst Legal Med & Forens Sci, Cali, Colombia
[4] Univ Antioquia, Coll Dent, Medellin, Colombia
[5] Univ Antioquia, Elect Engn Fac, Dept Elect & Telecommun, Medellin, Colombia
[6] Natl Inst Legal Med & Forens Sci, Bogota, Colombia
关键词
Artificial intelligence; Age determination; Panoramic radiographs; Machine learning; Deep learning; Review; NEURAL-NETWORKS; CLASSIFICATION; DEMIRJIANS; MODEL; CHILDREN; SAMPLE;
D O I
10.1007/s00414-024-03162-x
中图分类号
DF [法律]; D9 [法律]; R [医药、卫生];
学科分类号
0301 ; 10 ;
摘要
The aim of this systematic review is to analyze the literature to determine whether the methods of artificial intelligence are effective in determining age in panoramic radiographs. Searches without language and year limits were conducted in PubMed/Medline, Embase, Web of Science, and Scopus databases. Hand searches were also performed, and unpublished manuscripts were searched in specialized journals. Thirty-six articles were included in the analysis. Significant differences in terms of root mean square error and mean absolute error were found between manual methods and artificial intelligence techniques, favoring the use of artificial intelligence (p < 0.00001). Few articles compared deep learning methods with machine learning models or manual models. Although there are advantages of machine learning in data processing and deep learning in data collection and analysis, non-comparable data was a limitation of this study. More information is needed on the comparison of these techniques, with particular emphasis on time as a variable.
引用
收藏
页码:1459 / 1496
页数:38
相关论文
共 96 条
[1]   ECG-AI: electrocardiographic artificial intelligence model for prediction of heart failure [J].
Akbilgic, Oguz ;
Butler, Liam ;
Karabayir, Ibrahim ;
Chang, Patricia P. ;
Kitzman, Dalane W. ;
Alonso, Alvaro ;
Chen, Lin Y. ;
Soliman, Elsayed Z. .
EUROPEAN HEART JOURNAL - DIGITAL HEALTH, 2021, 2 (04) :626-634
[2]  
Albayrak B., 2021, Journal of Experimental and Clinical Medicine, V38, P188, DOI [DOI 10.52142/OMUJECM.38.SI.DENT.18, 10.52142/omujecm.38.si.dent.18]
[3]   Age Estimation from Pediatric Panoramic Dental Images with CNNs and LightGBM [J].
Aliyev, Rames ;
Arslanoglu, Emre ;
Yasa, Yasin ;
Oktay, Ayse Betul .
2022 MEDICAL TECHNOLOGIES CONGRESS (TIPTEKNO'22), 2022,
[4]  
Alkaabi S., 2020, Cyber Defence in the Age of AI, Smart Societies and Augmented Humanity, P375, DOI [10.1007/978-3-030-35746-7_17, DOI 10.1007/978-3-030-35746-7_17]
[5]   Evaluation of Convolutional Neural Network based on Dental Images for Age Estimation [J].
Alkaabi, Sultan ;
Yussof, Salman ;
Al-Mulla, Sameera .
2019 INTERNATIONAL CONFERENCE ON ELECTRICAL AND COMPUTING TECHNOLOGIES AND APPLICATIONS (ICECTA), 2019,
[6]   Third molar maturity index (I3M) assessment according to different geographical zones: a large multi-ethnic study sample [J].
Angelakopoulos, Nikolaos ;
De Luca, Stefano ;
Oliveira-Santos, Ines ;
Ribeiro, Isabella Lima Arrais ;
Bianchi, Ilenia ;
Balla, Sudheer B. ;
Kis, Hatice Cansu ;
Jimenez, Lourdes Gomez ;
Zolotenkova, Galina ;
Yusof, Mohd Yusmiaidil Putera ;
Selmanagic, Aida Hadzic ;
Pandey, Hemlata ;
Pereira, Palmela C. ;
da Nobrega, Johnys Berton Medeiros ;
Kalani, Hettiarachchi ;
Mieke, Sylvia M. ;
Kumagai, Akiko ;
Gulsahi, Ayse ;
Zelic, Ksenija ;
Marinkovic, Nemanja ;
Kelmendi, Jeta ;
Galic, Ivan ;
Vazquez, Israel Soriano ;
Spinas, Enrico ;
Velezmoro-Montes, Ymelda Wendy ;
Moukarzel, Maria ;
Toledo, Jorge Pinares ;
El-Bakary, Amal Abd El-Salam ;
Cameriere, Roberto .
INTERNATIONAL JOURNAL OF LEGAL MEDICINE, 2023, 137 (02) :403-425
[7]   CVIP-Net: A Convolutional Neural Network-Based Model for Forensic Radiology Image Classification [J].
Batool, Syeda Naila ;
Gilanie, Ghulam .
CMC-COMPUTERS MATERIALS & CONTINUA, 2023, 74 (01) :1319-1332
[8]   An empirical comparison of voting classification algorithms: Bagging, boosting, and variants [J].
Bauer, E ;
Kohavi, R .
MACHINE LEARNING, 1999, 36 (1-2) :105-139
[9]   A robust hybrid methodology between applied linear regression model (alrm) and multilayer perceptron (mlp) [J].
Bin Adnan, Mohamad Nasarudin ;
Ahmad, Wan Muhamad Amir W. ;
Rahman, Nuzlinda Abdul ;
Ghazali, Farah Muna Mohamad ;
Aleng, Nor Azlida ;
Badrin, Zainab Mat Yudin ;
Alam, Mohammad Khursheed ;
Noor, Nor Farid Mohd .
BANGLADESH JOURNAL OF MEDICAL SCIENCE, 2023, 22 (01) :38-46
[10]   Random forests [J].
Breiman, L .
MACHINE LEARNING, 2001, 45 (01) :5-32