The Importance of Artificial Intelligence in Upper Gastrointestinal Endoscopy

被引:11
作者
Popovic, Dusan [1 ,2 ]
Glisic, Tijana [1 ,3 ]
Milosavljevic, Tomica [4 ]
Panic, Natasa [2 ]
Marjanovic-Haljilji, Marija [2 ]
Mijac, Dragana [1 ,3 ]
Lalosevic, Milica Stojkovic [1 ,3 ]
Nestorov, Jelena [1 ,3 ]
Dragasevic, Sanja [1 ,3 ]
Savic, Predrag [1 ,5 ]
Filipovic, Branka [1 ,2 ]
机构
[1] Univ Belgrade, Fac Med Belgrade, Belgrade 11000, Serbia
[2] Clin Hosp Ctr Dr Dragisa Misovic Dedinje, Dept Gastroenterol, Belgrade 11000, Serbia
[3] Univ Clin Ctr Serbia, Clin Gastroenterohepatol, Belgrade 11000, Serbia
[4] Gen Hosp Euromed, Belgrade 11000, Serbia
[5] Clin Hosp Ctr Dr Dragisa Misovic Dedinje, Clin Surg, Belgrade 11000, Serbia
关键词
artificial intelligence; upper gastrointestinal endoscopy; Barrett's esophagus; esophageal squam cell carcinoma; gastric cancer; H; pylori; HELICOBACTER-PYLORI INFECTION; CONVOLUTIONAL NEURAL-NETWORKS; COMPUTER-AIDED DETECTION; BARRETTS-ESOPHAGUS; GASTRIC-CANCER; ASSISTED DETECTION; NEOPLASIA; DIAGNOSIS; ACCURACY; EFFICACY;
D O I
10.3390/diagnostics13182862
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Recently, there has been a growing interest in the application of artificial intelligence (AI) in medicine, especially in specialties where visualization methods are applied. AI is defined as a computer's ability to achieve human cognitive performance, which is accomplished through enabling computer "learning". This can be conducted in two ways, as machine learning and deep learning. Deep learning is a complex learning system involving the application of artificial neural networks, whose algorithms imitate the human form of learning. Upper gastrointestinal endoscopy allows examination of the esophagus, stomach and duodenum. In addition to the quality of endoscopic equipment and patient preparation, the performance of upper endoscopy depends on the experience and knowledge of the endoscopist. The application of artificial intelligence in endoscopy refers to computer-aided detection and the more complex computer-aided diagnosis. The application of AI in upper endoscopy is aimed at improving the detection of premalignant and malignant lesions, with special attention on the early detection of dysplasia in Barrett's esophagus, the early detection of esophageal and stomach cancer and the detection of H. pylori infection. Artificial intelligence reduces the workload of endoscopists, is not influenced by human factors and increases the diagnostic accuracy and quality of endoscopic methods.
引用
收藏
页数:18
相关论文
共 71 条
[11]   Real-time use of artificial intelligence in the evaluation of cancer in Barrett's oesophagus [J].
Ebigbo, Alanna ;
Mendel, Robert ;
Probst, Andreas ;
Manzeneder, Johannes ;
Prinz, Friederike ;
de Souza, Luis A., Jr. ;
Papa, Joao ;
Palm, Christoph ;
Messmann, Helmut .
GUT, 2020, 69 (04) :615-616
[12]   Artificial intelligence assisted detection of superficial esophageal squamous cell carcinoma in white-light endoscopic images by using a generalized system [J].
Feng, Yadong ;
Liang, Yan ;
Li, Peng ;
Long, Qigang ;
Song, Jie ;
Li, Mengjie ;
Wang, Xiaofen ;
Cheng, Cui-e ;
Zhao, Kai ;
Ma, Jifeng ;
Zhao, Lingxiao .
DISCOVER ONCOLOGY, 2023, 14 (01)
[13]   Towards a robust and compact deep learning system for primary detection of early Barrett's neoplasia: Initial image-based results of training on a multi-center retrospectively collected data set [J].
Fockens, Kiki N. ;
Jukema, Jelmer B. ;
Boers, Tim ;
Jong, Martijn R. ;
van der Putten, Joost A. ;
Pouw, Roos E. ;
Weusten, Bas L. A. M. ;
Alvarez Herrero, Lorenza ;
Houben, Martin H. M. G. ;
Nagengast, Wouter B. ;
Westerhof, Jessie ;
Alkhalaf, Alaa ;
Mallant, Rosalie ;
Ragunath, Krish ;
Seewald, Stefan ;
Elbe, Peter ;
Barret, Maximilien ;
Ortiz Fernandez-Sordo, Jacobo ;
Pech, Oliver ;
Beyna, Torsten ;
van der Sommen, Fons ;
de With, Peter H. ;
de Groof, A. Jeroen ;
Bergman, Jacques J. .
UNITED EUROPEAN GASTROENTEROLOGY JOURNAL, 2023, 11 (04) :324-336
[14]   Real-time automated diagnosis of precancerous lesions and early esophageal squamous cell carcinoma using a deep learning model (with videos) [J].
Guo, LinJie ;
Xiao, Xiao ;
Wu, ChunCheng ;
Zeng, Xianhui ;
Zhang, Yuhang ;
Du, Jiang ;
Bai, Shuai ;
Xie, Jia ;
Zhang, Zhiwei ;
Li, Yuhong ;
Wang, Xuedan ;
Cheung, Onpan ;
Sharma, Malay ;
Liu, Jingjia ;
Hu, Bing .
GASTROINTESTINAL ENDOSCOPY, 2020, 91 (01) :41-51
[15]   'Artificial intelligence in Barrett's Esophagus' [J].
Hamade, Nour ;
Sharma, Prateek .
THERAPEUTIC ADVANCES IN GASTROINTESTINAL ENDOSCOPY, 2021, 14
[16]   Gastric cancer [J].
Hartgrink, Henk H. ;
Jansen, Edwin P. M. ;
van Grieken, Nicole C. T. ;
van de Velde, Cornelis J. H. .
LANCET, 2009, 374 (9688) :477-490
[17]   Artificial intelligence using convolutional neural networks for real-time detection of early esophageal neoplasia in Barrett's esophagus (with video) [J].
Hashimoto, Rintaro ;
Requa, James ;
Dao, Tyler ;
Ninh, Andrew ;
Tran, Elise ;
Mai, Daniel ;
Lugo, Michael ;
Chehade, Nabil El-Hage ;
Chang, Kenneth J. ;
Karnes, Williams E. ;
Samarasena, Jason B. .
GASTROINTESTINAL ENDOSCOPY, 2020, 91 (06) :1264-+
[18]   Diagnostic outcomes of esophageal cancer by artificial intelligence using convolutional neural networks [J].
Horie, Yoshimasa ;
Yoshio, Toshiyuki ;
Aoyama, Kazuharu ;
Yoshimizu, Shoichi ;
Horiuchi, Yusuke ;
Ishiyama, Akiyoshi ;
Hirasawa, Toshiaki ;
Tsuchida, Tomohiro ;
Ozawa, Tsuyoshi ;
Ishihara, Soichiro ;
Kumagai, Youichi ;
Fujishiro, Mitsuhiro ;
Maetani, Iruru ;
Fujisaki, Junko ;
Tada, Tomohiro .
GASTROINTESTINAL ENDOSCOPY, 2019, 89 (01) :25-32
[19]   Detecting early gastric cancer: Comparison between the diagnostic ability of convolutional neural networks and endoscopists [J].
Ikenoyama, Yohei ;
Hirasawa, Toshiaki ;
Ishioka, Mitsuaki ;
Namikawa, Ken ;
Yoshimizu, Shoichi ;
Horiuchi, Yusuke ;
Ishiyama, Akiyoshi ;
Yoshio, Toshiyuki ;
Tsuchida, Tomohiro ;
Takeuchi, Yoshinori ;
Shichijo, Satoki ;
Katayama, Naoyuki ;
Fujisaki, Junko ;
Tada, Tomohiro .
DIGESTIVE ENDOSCOPY, 2021, 33 (01) :141-150
[20]   Deep learning analyzes Helicobacter pylori infection by upper gastrointestinal endoscopy images [J].
Itoh, Takumi ;
Kawahira, Hiroshi ;
Nakashima, Hirotaka ;
Yata, Noriko .
ENDOSCOPY INTERNATIONAL OPEN, 2018, 6 (02) :E139-E144