Generalizable and Accurate 6D Object Pose Estimation Network

被引:0
|
作者
Fu, Shouxu [1 ]
Li, Xiaoning [1 ]
Yu, Xiangdong [1 ]
Cao, Lu [1 ]
Li, Xingxing [1 ]
机构
[1] Sichuan Nomal Univ, Coll Comp Sci, Chengdu 610101, Peoples R China
来源
PATTERN RECOGNITION AND COMPUTER VISION, PRCV 2023, PT III | 2024年 / 14427卷
关键词
6D Object Pose Estimation; Coordinates-based Method; RGB Data;
D O I
10.1007/978-981-99-8435-0_25
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
6D object pose estimation is an important task in computer vision, and the task of estimating 6D object pose from a single RGB image is even more challenging. Many methods use deep learning to acquire 2D feature points from images to establish 2D-3D correspondences, and further predict 6D object pose with Perspective-n-Points (PnP) algorithm. However, most of these methods have problems with inaccurate acquisition of feature points, poor generality of the network and difficulty in end-to-end training of the network. In this paper, we design an end-to-end differentiable network for 6D object pose estimation. We propose Random Offset Distraction (ROD) and Full Convolution Asymmetric Feature Extractor (FCAFE) with the Probabilistic Perspective-n-Points (ProPnP) algorithm to improve the accuracy and robustness of 6D object pose estimation. Experiments show that our method achieves a new state-of-the-art result on the LineMOD dataset, with an accuracy of 97.42% in the ADD(-S) metric. Our approach is also very competitive on the Occlusion LineMOD dataset.
引用
收藏
页码:312 / 324
页数:13
相关论文
共 50 条
  • [1] ACCURATE 6D OBJECT POSE ESTIMATION BY POSE CONDITIONED MESH RECONSTRUCTION
    Castro, Pedro
    Armagan, Anil
    Kim, Tae-Kyun
    2020 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 2020, : 4147 - 4151
  • [2] GRPoseNet: a generalizable and robust 6D object pose estimation network using sparse RGB views
    Shi, Wubin
    Gai, Shaoyan
    Da, Feipeng
    Cai, Zeyu
    Wang, Jiaoling
    VISUAL COMPUTER, 2025,
  • [3] Accurate 6D Object Pose Estimation and Refinement in Cluttered Scenes
    Jin, Yixiang
    Rossiter, John Anthony
    Veres, Sandor M.
    PROCEEDINGS OF THE 2ND INTERNATIONAL CONFERENCE ON ROBOTICS, COMPUTER VISION AND INTELLIGENT SYSTEMS (ROBOVIS), 2021, : 31 - 39
  • [4] Graph neural network for 6D object pose estimation
    Yin, Pengshuai
    Ye, Jiayong
    Lin, Guoshen
    Wu, Qingyao
    KNOWLEDGE-BASED SYSTEMS, 2021, 218
  • [5] A Pose Proposal and Refinement Network for Better 6D Object Pose Estimation
    Trabelsi, Ameni
    Chaabane, Mohamed
    Blanchard, Nathaniel
    Beveridge, Ross
    2021 IEEE WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION WACV 2021, 2021, : 2381 - 2390
  • [6] PointPoseNet: Point Pose Network for Robust 6D Object Pose Estimation
    Chen, Wei
    Duan, Jinming
    Basevi, Hector
    Chang, Hyung Jin
    Leonardis, Ales
    2020 IEEE WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION (WACV), 2020, : 2813 - 2822
  • [7] On Evaluation of 6D Object Pose Estimation
    Hodan, Tomas
    Matas, Jiri
    Obdrzalek, Stephan
    COMPUTER VISION - ECCV 2016 WORKSHOPS, PT III, 2016, 9915 : 606 - 619
  • [8] ESD-Pose: Enhanced Semantic Discrimination for Generalizable 6D Pose Estimation
    Deng, Xingyuan
    Wang, Kangru
    Wang, Lei
    Zhu, Dongchen
    Li, Jiamao
    PATTERN RECOGNITION AND COMPUTER VISION, PRCV 2024, PT VI, 2025, 15036 : 371 - 386
  • [9] Single Shot 6D Object Pose Estimation
    Kleeberger, Kilian
    Huber, Marco F.
    2020 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), 2020, : 6239 - 6245
  • [10] BOP: Benchmark for 6D Object Pose Estimation
    Hodan, Tomas
    Michel, Frank
    Brachmann, Eric
    Kehl, Wadim
    Buch, Anders Glent
    Kraft, Dirk
    Drost, Bertram
    Vidal, Joel
    Ihrke, Stephan
    Zabulis, Xenophon
    Sahin, Caner
    Manhardt, Fabian
    Tombari, Federico
    Kim, Tae-Kyun
    Matas, Jiri
    Rother, Carsten
    COMPUTER VISION - ECCV 2018, PT X, 2018, 11214 : 19 - 35