Diagnosing oral and maxillofacial diseases using deep learning

被引:2
|
作者
Kang, Junegyu [1 ]
Le, Van Nhat Thang [2 ]
Lee, Dae-Woo [3 ,4 ,5 ]
Kim, Sungchan [6 ,7 ]
机构
[1] HYPERCloud, Seoul 06038, South Korea
[2] Hue Univ, Hue Univ Med & Pharm, Fac Odonto Stomatol, Hue 49120, Vietnam
[3] Jeonbuk Natl Univ, Dept Pediat Dent, Jeonju 54896, South Korea
[4] Jeonbuk Natl Univ, Jeonbuk Natl Univ Hosp, Biomed Res Inst, Jeonju 54896, South Korea
[5] Jeonbuk Natl Univ, Res Inst Clin Med, Jeonju 54896, South Korea
[6] Jeonbuk Natl Univ, Dept Comp Sci & Artificial Intelligence, Jeonju 54896, South Korea
[7] Jeonbuk Natl Univ, Ctr Adv Image & Informat Technol, Jeonju 54896, South Korea
基金
新加坡国家研究基金会;
关键词
COMPUTED-TOMOGRAPHY; NETWORK; TUMORS;
D O I
10.1038/s41598-024-52929-0
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The classification and localization of odontogenic lesions from panoramic radiographs is a challenging task due to the positional biases and class imbalances of the lesions. To address these challenges, a novel neural network, DOLNet, is proposed that uses mutually influencing hierarchical attention across different image scales to jointly learn the global representation of the entire jaw and the local discrepancy between normal tissue and lesions. The proposed approach uses local attention to learn representations within a patch. From the patch-level representations, we generate inter-patch, i.e., global, attention maps to represent the positional prior of lesions in the whole image. Global attention enables the reciprocal calibration of path-level representations by considering non-local information from other patches, thereby improving the generation of whole-image-level representation. To address class imbalances, we propose an effective data augmentation technique that involves merging lesion crops with normal images, thereby synthesizing new abnormal cases for effective model training. Our approach outperforms recent studies, enhancing the classification performance by up to 42.4% and 44.2% in recall and F1 scores, respectively, and ensuring robust lesion localization with respect to lesion size variations and positional biases. Our approach further outperforms human expert clinicians in classification by 10.7 % and 10.8 % in recall and F1 score, respectively.
引用
收藏
页数:14
相关论文
共 50 条
  • [41] Underwater Image Enhancement using deep learning
    Kumar, Naresh
    Manzar, Juveria
    Shivani
    Garg, Shubham
    MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 82 (30) : 46789 - 46809
  • [42] Using Deep Learning for Compound Selectivity Prediction
    Zhang, Ruisheng
    Li, Juan
    Lu, Jingjing
    Hu, Rongjing
    Yuan, Yongna
    Zhao, Zhili
    CURRENT COMPUTER-AIDED DRUG DESIGN, 2016, 12 (01) : 5 - 14
  • [43] Study of Depression Detection using Deep Learning
    Sanyal, Hrithik
    Shukla, Sagar
    Agrawal, Rajneesh
    2021 IEEE INTERNATIONAL CONFERENCE ON CONSUMER ELECTRONICS (ICCE), 2021,
  • [44] Deep learning-based hair removal for improved diagnostics of skin diseases
    El-Shafai, Walid
    El-Fattah, Ibrahim Abd
    Taha, Taha E.
    MULTIMEDIA TOOLS AND APPLICATIONS, 2024, 83 (09) : 27331 - 27355
  • [45] Cyberbullying detection using deep transfer learning
    Roy, Pradeep Kumar
    Mali, Fenish Umeshbhai
    COMPLEX & INTELLIGENT SYSTEMS, 2022, 8 (06) : 5449 - 5467
  • [46] Multimodal Vigilance Estimation Using Deep Learning
    Wu, Wei
    Sun, Wei
    Wu, Q. M. Jonathan
    Yang, Yimin
    Zhang, Hui
    Zheng, Wei-Long
    Lu, Bao-Liang
    IEEE TRANSACTIONS ON CYBERNETICS, 2022, 52 (05) : 3097 - 3110
  • [47] Recognition of rice leaf diseases and wheat leaf diseases based on multi-task deep transfer learning
    Jiang, Zhencun
    Dong, Zhengxin
    Jiang, Wenping
    Yang, Yuze
    COMPUTERS AND ELECTRONICS IN AGRICULTURE, 2021, 186
  • [48] Empowering surgeons: will artificial intelligence change oral and maxillofacial surgery?
    Sillmann, Y. M.
    Monteiro, J. L. G. C.
    Eber, P.
    Baggio, A. M. P.
    Peacock, Z. S.
    Guastaldi, F. P. S.
    INTERNATIONAL JOURNAL OF ORAL AND MAXILLOFACIAL SURGERY, 2025, 54 (02) : 179 - 190
  • [49] Enhancing Intrusion Detection System Using Machine Learning and Deep Learning
    Madhusudhan, R.
    Thakur, Shubham Kumar
    Pravisha, P.
    ADVANCED INFORMATION NETWORKING AND APPLICATIONS, VOL 3, AINA 2024, 2024, 201 : 326 - 337
  • [50] A retrospective analysis of oral and maxillofacial pathology in an Australian paediatric population
    Ha, W. N.
    Kelloway, E.
    Dost, F.
    Farah, C. S.
    AUSTRALIAN DENTAL JOURNAL, 2014, 59 (02) : 221 - 225